Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{3}{5}.\dfrac{1}{x}-\dfrac{1}{3}=\dfrac{4}{6}\)
\(\Leftrightarrow\dfrac{3}{5x}=1\)
\(\Leftrightarrow x=\dfrac{5}{3}\)
b) \(\dfrac{x}{2}=-\dfrac{2y}{8}=\dfrac{3z}{15}\)
áp dụng dãy tí số = nhau
\(\dfrac{x}{2}=-\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{2+8+15}=\dfrac{1200}{15}=80\)
\(\Leftrightarrow\dfrac{x}{2}=80\Rightarrow x=160\)
\(\Leftrightarrow-\dfrac{y}{4}=80\Rightarrow y=-320\)
\(\Leftrightarrow\dfrac{z}{5}=80\Rightarrow z=400\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=\dfrac{45}{9}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
c: Ta có: 10x=6y
nên x/3=y/5
Đặt x/3=y/5=k
=>x=3k; y=5k
Ta có: \(2x^2-y^2=-28\)
\(\Leftrightarrow2\cdot9k^2-25k^2=-28\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
=>x=6; y=10
TRường hợp 2: k=-2
=>x=-6; y=-10
Áp dụng BĐT AM-GM ta có:
\(\dfrac{x^4}{y+3z}+\dfrac{y+3z}{16}+\dfrac{1}{4}+\dfrac{1}{4}\ge4\sqrt[4]{\dfrac{x^4}{y+3z}\cdot\dfrac{y+3z}{16}\cdot\dfrac{1}{4}\cdot\dfrac{1}{4}}=x\)
\(\Rightarrow\dfrac{x^4}{y+3z}\ge x-\dfrac{y+3z}{16}-\dfrac{1}{2}\)
Tương tự cho 2 BĐT còn lại:
\(\dfrac{y^4}{z+3x}\ge y-\dfrac{z+3x}{16}-\dfrac{1}{2};\dfrac{z^4}{x+3y}\ge z-\dfrac{x+3y}{16}-\dfrac{1}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{3}{4}\left(x+y+z\right)-\dfrac{3}{2}\ge\dfrac{3}{4}\cdot3-\dfrac{3}{2}=\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Cách khác:
\(\dfrac{x^4}{y+3z}+\dfrac{y^4}{z+3x}+\dfrac{z^4}{x+3y}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4\left(x+y+z\right)}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4.\sqrt{3\left(x^2+y^2+z^2\right)}}=\dfrac{\sqrt{\left(x^2+y^2+z^2\right)^3}}{4\sqrt{3}}\)
\(\ge\dfrac{\sqrt{\left(xy+yz+zx\right)^3}}{4\sqrt{3}}\ge\dfrac{3\sqrt{3}}{4\sqrt{3}}=\dfrac{3}{4}\)
Dấu = xảy ra khi \(x=y=z=1\)
*Làm tắt
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2};x+2y+3z=34\Rightarrow\dfrac{x}{5}=\dfrac{2y}{6}=\dfrac{3z}{6}\Rightarrow\dfrac{x+2y+3z}{5+6+6}=\dfrac{34}{17}=2\)
\(\dfrac{x}{5}=2\Rightarrow x=10;\dfrac{y}{3}=2\Rightarrow y=6;\dfrac{z}{2}=4\Rightarrow z=4\)
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+2y+3z}{5+6+6}=\dfrac{34}{17}=2\\ \Rightarrow x=10;y=6;z=4\)