Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy+yz+xz=3xyz
<=> xy+yz+xz/xyz = 3
<=> 1/x + 1/y + 1/z = 3
Do vai trò x ; y ; z như nhau , ko mất tính tổng quát , giả sử
\(x\ge y\ge z\) . Khi đó , ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3.\frac{1}{x}\)
\(\Rightarrow3\le3.\frac{1}{x}\)
\(\Rightarrow1\le\frac{1}{x}\)
\(\Rightarrow x\le1\)
Mà x nguyên dương nên x = 1
Làm tương tự như vậy , ta có : y = 1 ; z = 1
Vậy ....
Sai rồi bạn , nếu làm như bạn , phải giả sử
z \(\ge y\ge x\)chứ
:v
VT \(\ge\frac{\sqrt{3\sqrt[3]{x^3.y^3.1}}}{xy}+\frac{\sqrt{3\sqrt[3]{y^3.z^3.1}}}{yz}+\frac{\sqrt{3\sqrt[3]{z^3.x^3.1}}}{zx}\)( cauchy)
= \(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\)
\(\ge3\sqrt{3}\)( cauchy)
"=" <=> x = y =z.
Bài này dùng \(a^3+b^3\ge ab\left(a+b\right)\) được không nhỉ ??
Em ngại làm lắm cô Chi, cô thử cách này có được không ạ ?
\(xyz+x^3+y^3\ge xy\left(x+y+z\right)\)\(\Rightarrow\sqrt{1+x^3+y^3}\ge\sqrt{xy\left(x+y+z\right)}\)
Các mấy cái kia cũng biến đổi vậy.
Không chắc nx :((
\(\sqrt{x^2+2024}=\sqrt{x^2+xy+yz+zx}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)
Tương tự: \(\sqrt{y^2+2024}\ge\sqrt{xy}+\sqrt{yz}\)
\(\sqrt{z^2+2024}\ge\sqrt{xz}+\sqrt{yz}\)
Cộng vế:
\(P\ge\dfrac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}=2\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2024}{3}\)
Đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\left(a;b;c>0\right)\) và \(p=a+b+c;q=ab+bc+ca;r=abc\)
Thì \(a^2+b^2+c^2+2=a^2b^2c^2\Leftrightarrow p^2-4q+2=r^2-2q\)
Cần chứng minh: \(a^2+b^2+c^2+6\ge2\left(ab+bc+ca\right)\Leftrightarrow p^2-2q+6\ge2q\)
Nếu \(q\le6\): Có \(p^2\ge3q\) nên ta chứng minh \(q+6\ge2q\Leftrightarrow q\le6\) (đúng)
Nếu \(q>6\) mình chưa nghĩ ra.
@Akai Haruma cô có cách nào khác hoặc cách nào cho trường hợp q > 6 không cô?
\(x+y+z+2=xyz\)
\(\Leftrightarrow2x+2y+2z+xy+yz+zx+3=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)
\(\Leftrightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=2\)
\(\Rightarrow2=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z+3}\)
\(\Leftrightarrow2x+2y+2z+6\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)
\(\Leftrightarrow2x+2y+2z+6\ge x+y+z+2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\)
\(\Leftrightarrow x+y+z+6\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
Dấu "=" xảy ra khi \(x=y=z=2\)
Áp dụng BĐT Cô - si cho 3 số không âm:
\(1+x^3+y^3\ge3\sqrt[3]{1.x^3y^3}=3xy\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3}}{\sqrt{xy}}\)
Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3}}{\sqrt{zx}}\)
Cộng các vế của các BĐT trên, ta được:
\(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge\)\(\frac{\sqrt{3}}{\sqrt{xy}}\)\(+\frac{\sqrt{3}}{\sqrt{yz}}\)\(+\frac{\sqrt{3}}{\sqrt{zx}}\)
Tiếp tục áp dụng Cô - si:
\(BĐT\ge3\sqrt[3]{\frac{\sqrt{3}}{\sqrt{xy}}.\frac{\sqrt{3}}{\sqrt{yz}}.\frac{\sqrt{3}}{\sqrt{zx}}}=3\sqrt{3}\)
Vậy \(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
\(x^3+y^3+1=x^3+y^3+xyz\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)
Tương tự:
\(y^3+z^3+1\ge yz\left(x+y+z\right);z^3+x^3+1\ge zx\left(x+y+z\right)\)
\(\Rightarrow VT\ge\frac{\sqrt{xy\left(x+y+z\right)}}{xy}+\frac{\sqrt{yz\left(x+y+z\right)}}{yz}+\frac{\sqrt{zx\left(x+y+z\right)}}{zx}\)
\(=\sqrt{x+y+z}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)
\(\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\frac{1}{\sqrt{xy}\cdot\sqrt{yz}\cdot\sqrt{zx}}}=3\sqrt{3}\)
Dấu "=" xảy ra tại \(x=y=z=1\)