Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay \(x=1\)vào pt ta được :
\(1+k-4-4=0\)
\(\Leftrightarrow k-7=0\)
\(\Leftrightarrow k=7\)
b) Thay \(k=7\)vào pt ta được :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(8x^2-8x\right)+\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
* \(x-1=0\Leftrightarrow x=1\)
* \(x^2+8x+4=0\)
Ta có : \(\Delta=8^2-4\times4=48>0\)
\(\Rightarrow\)pt có 2 nghiệm : \(\orbr{\begin{cases}x_1=\frac{-8-\sqrt{48}}{2}=-4-2\sqrt{3}\\x_2=\frac{-8+\sqrt{48}}{2}=-4+2\sqrt{3}\end{cases}}\)
Vậy ...
(1-x)(x^2+1)=0 chắc chắn sẽ không nhận x=-1 hoặc x=5 làm nghiệm rồi
(2x^2+7)(8-mx)=0
=>8-mx=0
Nếu 8-mx=0 nhận x=-1 làm nghiệm thì m+8=0
=>m=-8
Nếu 8-mx=0 nhận x=5 làm nghiệm thì 8-5m=0
=>m=8/5
\(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
Vậy ....
Ta luôn có: \(a^3+b^3+c^3=3abc\) (1) ; ( (1) bằng 0 khi và chỉ khi a+b+c = 0)
Áp dụng đẳng thức (1) và bài ta được:
\(\left(2x-1\right)^3+\left(x+5\right)^3+\left(4-3x\right)^3=0\)
<=> \(3.\left(2x-1\right)\left(x+5\right)\left(4-3x\right)=0\)
<=> 2x-1 = 0 => 2x = 1 => x = 1/2
hoặc x+5 = 0 => x = -5
hoặc 4-3x = 0 => 3x = 4 => x = 4/3
Vậy phương trình đã cho có tập nghiệm là S = {\(-5;\frac{4}{3};\frac{1}{2}\)}
f(5) =0 <=> 5^2 -5^2 +b =0 => b = 0
b =0 ; f(x) =x^2 -5x =x(x-5) => nghiệm thứ 2 x2 =0
Thay x=5 vào phương trình, ta có:
52-5.5+b=0
\(\Rightarrow\)b=0
Ta có phương trình:
x2-5x=0
=> x2=0