Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B có, x2>hoặc = 0 => x-x2<x
dấu = xảy ra khi x2=0 -> x=0=> MAX B =0
\(B=x-x^2\)
\(B=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}\)
\(B=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTLN của \(B\) là \(\frac{1}{4}\) khi \(x=\frac{1}{2}\)
Chúc bạn học tốt ~
Chứng Minh: a) a2 + b2 >= 2ab với mọi ab
b) x2+2x+3>0 với mọi x
Trình bày rõ ràng giúp tớ nha (toán8)
câu a :
\(a^2+b^{^{ }2}\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)
( a - b ) ^ 2 >= 0 là điều hiển nhiên nên suy ra \(a^2+b^2\ge2ab\)với mọi a ,b
câu b :
\(^{x^2+2x+3\ge0\Leftrightarrow x^2+2x+1+2\ge0\Leftrightarrow\left(x+1\right)^2+2\ge0}\)
vì ( x+1 )^2 >= 0 nên (x + 1 )^2 +2 > 0 với mọi x
a) \(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\)
\(\Leftrightarrow x^3+9x+2=x^3+8\)
\(\Leftrightarrow x^3+9x=x^3+8-2\)
\(\Leftrightarrow x^3+9x=x^3+6\)
\(\Leftrightarrow x^3+9x=x^3+6x-x^3\)
\(\Leftrightarrow\frac{2}{3}\)
b) \(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow x^2-4=8x-16\)
\(\Leftrightarrow x^4-4=8x-16+16\)
\(\Leftrightarrow x^2+12=8x\)
\(\Leftrightarrow x^2+12=8x-8x\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
a) ( 2x - 1 )( 2x + 1 ) - ( x - 1 )2 = 3x( x - 2 )
<=> 4x2 - 1 - ( x2 - 2x + 1 ) - 3x( x - 2 ) = 0
<=> 4x2 - 1 - x2 + 2x - 1 - 3x2 + 6x = 0
<=> 8x - 2 = 0
<=> x = 1/4
Vậy phương trình có 1 nghiệm x = 1/4
b) ( 4x - 3 )( 3x + 2 ) = 2( 3x - 1 )( 2x + 5 )
<=> 12x2 - x - 6 - 2( 6x2 + 13x - 5 ) = 0
<=> 12x2 - x - 6 - 12x2 - 26x + 10 = 0
<=> -27x + 4 = 0
<=> x = 4/27
Vậy phương trình có 1 nghiệm x = 4/27
c) ( x - 1 )( x2 + x + 1 ) - 5( 2x - 3 ) = x( x2 - 3 )
<=> x3 - 1 - 10x + 15 - x( x2 - 3 ) = 0
<=> x3 + 14 - 10x - x3 + 3x = 0
<=> -7x + 14 = 0
<=> x = 2
Vậy phương trình có nghiệm x = 2
d) \(\frac{3x-2}{4}-\frac{x+4}{3}=\frac{1+x}{12}\)
<=> \(\frac{3x}{4}-\frac{2}{4}-\frac{x}{3}-\frac{4}{3}=\frac{1}{12}+\frac{x}{12}\)
<=> \(\frac{3}{4}x-\frac{1}{3}x-\frac{1}{12}x=\frac{1}{12}+\frac{1}{2}+\frac{4}{3}\)
<=> \(x\left(\frac{3}{4}-\frac{1}{3}-\frac{1}{12}\right)=\frac{23}{12}\)
<=> \(x\cdot\frac{1}{3}=\frac{23}{12}\)
<=> x = 23/4
Vậy phương trình có 1 nghiệm x = 23/4
Ta có : A = x2 - 4x + 1
=> A = x2 - 2.x.2 + 4 - 3
=> A = (x - 2)2 - 3
Mà : (x - 2)2 \(\ge0\forall x\in R\)
Nên : (x - 2)2 - 3 \(\ge-3\forall x\in R\)
Vậy GTNN của A là -3 khi x = 2
\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2
Vậy gtnn của B là 10 khi x=-1/2
---
\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi x=0 hoặc x=-5
a)\(x^2+10x=24\)
\(\Leftrightarrow x^2+10x-24=0\)
\(\Leftrightarrow x^2-2x+12x-24=0\)
\(\Leftrightarrow x\left(x-2\right)+12\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x+12=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-12\end{array}\right.\)
b)\(4x^2+4x=24\)
\(\Leftrightarrow4x^2+4x-24=0\)
\(\Leftrightarrow4\left(x^2+x-6\right)=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
c)\(4x^2-4x=48\)
\(\Leftrightarrow4x^2-4x-48=0\)
\(\Leftrightarrow4\left(x^2-x-12\right)=0\)
\(\Leftrightarrow x^2-x-12=0\)
\(\Leftrightarrow x^2+3x-4x-12=0\)
\(\Leftrightarrow x\left(x+3\right)-4\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+3=0\\x-4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=4\end{array}\right.\)
\(a,x^2+10x=24\)
\(\Leftrightarrow x^2+10x-24=0\)
\(\Leftrightarrow x^2-2x+12x-24=0\)
\(\Leftrightarrow x\left(x-2\right)+12\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x+12=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-12\end{array}\right.\)
\(\text{Vậy x=2 hoặc x=-12 }\)
\(b,4x^2+4x=24\)
\(\Leftrightarrow4x^2+4x-24=0\)
\(\Leftrightarrow4x^2-8x+12x-24=0\)
\(=4x\left(x-2\right)+12\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\4x+12=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
Vậy hoặc \(\text{Vậy x=2 hoặc x=-3 }\)
\(c,4x^2-4x=48\)
\(\Leftrightarrow4x^2-4x-48=0\)
\(\Leftrightarrow\left[\left(2x\right)^2-2.2x+1^2\right]-1^2-48=0\)
\(\Leftrightarrow\left(2x-1\right)^2-49=0\)
\(\Leftrightarrow\left(2x-1\right)^2-7^2=0\)
\(\Leftrightarrow\left(2x-1-7\right)\left(2x-1+7\right)=0\)
\(\Leftrightarrow\left(2x-8\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-8=0\\2x+6=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-3\end{array}\right.\)
\(\text{Vậy x=4 hoặc x=-3
}\)
4 chia 3 dư 1 nên 4n chia 3 dư 1 hay 4n - 1 chia hết cho 3.
do đó 43^2014 - 1 chia hết cho 3.
a) (5x - 1)(2x + 1) = (5x -1)(x + 3)
<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0
<=> (5x - 1)(2x + 1 - x - 3) = 0
<=> (5x - 1)(x - 2) = 0
<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)
Vậy x = 0,2 ; x = 2 là nghiệm phương trình
b) x3 - 5x2 - 3x + 15 = 0
<=> x2(x - 5) - 3(x - 5) = 0
<=> (x2 - 3)(x - 5) = 0
<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)
<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)
<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)
Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm
c) (x - 3)2 - (5 - 2x)2 = 0
<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0
<=> (-x + 2)(3x - 8) = 0
<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)
d) x3 + 4x2 + 4x = 0
<=> x(x2 + 4x + 4) = 0
<=> x(x + 2)2 = 0
<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)
\(B=x^2-x\)
\(B=x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)
mà \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge\frac{1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy Bmin = 1/4 <=> x = 1/2
P.s : đây là tìm B min
Còn cách nữa tìm Bmax :v
Vì \(x^2\ge0\forall x\)
\(\Rightarrow B\le x\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Vậy Bmax = 0 <=> x = 0