K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2018

B có, x2>hoặc = 0 => x-x2<x

dấu = xảy ra khi x2=0 -> x=0=> MAX B =0

24 tháng 9 2018

\(B=x-x^2\)

\(B=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}\)

\(B=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTLN của \(B\) là \(\frac{1}{4}\) khi \(x=\frac{1}{2}\)

Chúc bạn học tốt ~ 

24 tháng 9 2018

\(B=x^2-x\)

\(B=x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)

\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)

mà \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B\ge\frac{1}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Vậy Bmin = 1/4 <=> x = 1/2

P.s : đây là tìm B min

24 tháng 9 2018

Còn cách nữa tìm Bmax :v

Vì \(x^2\ge0\forall x\)

\(\Rightarrow B\le x\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)

Vậy Bmax = 0 <=> x = 0

15 tháng 4 2017

câu a : 

 \(a^2+b^{^{ }2}\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)

 ( a - b ) ^ 2 >= 0 là điều hiển nhiên nên suy ra \(a^2+b^2\ge2ab\)với mọi a ,b 

câu b : 

\(^{x^2+2x+3\ge0\Leftrightarrow x^2+2x+1+2\ge0\Leftrightarrow\left(x+1\right)^2+2\ge0}\)

 vì ( x+1 )^2 >= 0 nên (x + 1 )^2 +2 > 0 với mọi x

2 tháng 2 2021

a) ( 2x - 1 )( 2x + 1 ) - ( x - 1 )2 = 3x( x - 2 )

<=> 4x2 - 1 - ( x2 - 2x + 1 ) - 3x( x - 2 ) = 0

<=> 4x2 - 1 - x2 + 2x - 1 - 3x2 + 6x = 0

<=> 8x - 2 = 0

<=> x = 1/4

Vậy phương trình có 1 nghiệm x = 1/4

b) ( 4x - 3 )( 3x + 2 ) = 2( 3x - 1 )( 2x + 5 )

<=> 12x2 - x - 6 - 2( 6x2 + 13x - 5 ) = 0

<=> 12x2 - x - 6 - 12x2 - 26x + 10 = 0

<=> -27x + 4 = 0

<=> x = 4/27

Vậy phương trình có 1 nghiệm x = 4/27

c) ( x - 1 )( x2 + x + 1 ) - 5( 2x - 3 ) = x( x2 - 3 )

<=> x3 - 1 - 10x + 15 - x( x2 - 3 ) = 0

<=> x3 + 14 - 10x - x3 + 3x = 0

<=> -7x + 14 = 0

<=> x = 2

Vậy phương trình có nghiệm x = 2

d) \(\frac{3x-2}{4}-\frac{x+4}{3}=\frac{1+x}{12}\)

<=> \(\frac{3x}{4}-\frac{2}{4}-\frac{x}{3}-\frac{4}{3}=\frac{1}{12}+\frac{x}{12}\)

<=> \(\frac{3}{4}x-\frac{1}{3}x-\frac{1}{12}x=\frac{1}{12}+\frac{1}{2}+\frac{4}{3}\)

<=> \(x\left(\frac{3}{4}-\frac{1}{3}-\frac{1}{12}\right)=\frac{23}{12}\)

<=> \(x\cdot\frac{1}{3}=\frac{23}{12}\)

<=> x = 23/4

Vậy phương trình có 1 nghiệm x = 23/4

3 tháng 2 2021

a) (5x - 1)(2x + 1) = (5x -1)(x + 3)

<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0

<=> (5x - 1)(2x + 1 - x - 3) = 0

<=> (5x - 1)(x - 2) = 0

<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)

Vậy x = 0,2 ; x = 2 là nghiệm phương trình

b) x3 - 5x2 - 3x + 15 = 0

<=> x2(x - 5) - 3(x - 5) = 0

<=> (x2 - 3)(x - 5) = 0

<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)

<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)

<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)

Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm

3 tháng 2 2021

c) (x - 3)2 - (5 - 2x)2 = 0

<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0

<=> (-x + 2)(3x - 8) = 0

<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)

d) x3 + 4x2 + 4x = 0

<=> x(x2 + 4x + 4) = 0

<=> x(x + 2)2 = 0

<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)

13 tháng 8 2016

a.

\(f\left(x\right)=x^3-x^2+3x-3=x^2\left(x-1\right)+3\left(x-1\right)=\left(x^2+3\right)\left(x-1\right)\)

f(x) > 0

<=> x2 + 3 và x - 1 cùng dấu

  • \(\Leftrightarrow\hept{\begin{cases}x^2+3>0\\x-1>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>0\\x>1\end{cases}}\Leftrightarrow x>1\)
  • \(\Leftrightarrow\hept{\begin{cases}x^2+3< 0\\x-1< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< -3\\x< 1\end{cases}\Rightarrow}\) loại

Vậy x > 1

b.

\(g\left(x\right)=x^3+x^2+9x+9=x^2\left(x+1\right)+9\left(x+1\right)=\left(x^2+9\right)\left(x+1\right)\)

g(x) < 0

<=> x2 + 9 và x + 1 khác dấu

  • \(\Leftrightarrow\hept{\begin{cases}x^2+9< 0\\x+1>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< -9\\x>1\end{cases}\Rightarrow}\) loại
  • \(\Leftrightarrow\hept{\begin{cases}x^2+9>0\\x+1< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2>-9\\x< -1\end{cases}}\Rightarrow\)loại

Vậy không tìm được x thỏa mãn yêu cầu đề.

13 tháng 8 2016

??????

năm nay mới lên lớp 8 nên chưa hỉu lắm!!

7657567868976987097907808796979

1/ (x-1)3 - (x+1)3 + 6(x+1) (x-1)

kết hợp 2 bài nhân đơn thức vs đa thức và nhân đa thức vs đa thức vô làm!!

54745764747858857674747568879940457

25 tháng 1 2016

mình cũng bó tay  

25 tháng 1 2016

bạn giải dùm mink đi rồi mình tick cho