Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để 113 + x chia hết cho 7
=> 113 + x là B(7)
=> 113 + x = 7k
=> x = 7k - 113
b) 113+ x chia hết cho 13
=> 113 + x là B(13)
=> 113 + x = 13k
=> x = 13k - 113
b) 113+n=104 +9+n=104+(9+n)
vì 104 chia hết cho 13 nên để 113+n chia hết cho 13 khi (9+n) chia hết cho 13
=> 9+n có dạng 13.k ( k thuộc N)
hay 9+n=13.k => n=13.k -9 ( với k thuộc N*)
a) 113+n=112+1+n=112+(1+n)
Vì 112 chia hết cho 7 nên để 113+n chia hết cho 7 khi (1+n) chia hết cho 7
=> 1+n có dạng 7.k ( k thuộc N)
a; 35 ⋮ \(x\) + 3
\(x+3\) \(\in\) Ư(35) = {-35; - 7; -5; -1; 1; 5; 7; 35}
Lập bảng ta có:
\(x+3\) | -35 | -7 | -5 | -1 | 1 | 5 | 7 | 35 |
\(x\) | -38 | -10 | -8 | -4 | -2 | 2 | 4 | 32 |
Theo bảng trên ta có:
\(x\in\) {-38; -10; -8; -4; -2; 2; 4; 32}
Kết luận: \(x\) {-38; -10; -8; -2; 2; 4; 32}
-
b; 10 ⋮ 2\(x\) + 1
2\(x\) + 1 \(\in\) Ư(10) = {-10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
2\(x+1\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(x\) | -11/2 | -3 | -3/2 | -1 | 0 | 3/2 | 2 | 11/2 |
Theo bảng trên ta có: \(x\in\) {-11/2; -3; -3/2; -1; 0; 3/2; 2; 11/2}
a) n+2 \(\in\)B(3)={0;3;6;9;12;15;18;21;...}
\(\Rightarrow\)n=1;4;7;10;13;16;19;....
b) 4n-5 \(\in\)B(13)={0;13;26;39;42;.....}
\(\Rightarrow\)n=5;18;31;44;47;...
c) 5n-1 \(\in\)B(7)={0;7;14;21;28;35;42;...}
\(\Rightarrow\)n=3
d) 25n+3 \(\in\)B(57)={0;57;114;171;228;285...}
\(\Rightarrow\)n=9
Lời giải:
a. Ta thấy:
$39\vdots 13; 130\vdots 13$
$\Rightarrow 39+130\vdots 13$
Do đó để $A=39+130+x\vdots 13$ thì $x\vdots 13$
b.
$39+130\vdots 13$
$\Rightarrow$ để $A=39+130+x\not\vdots 13$ thì $x\not\vdots 13$
Ta thấy rằng 113 + 2x chia hết cho 7 mà 113 + 2x là số nhỏ nhất , 113 lại là số chia 7 dư 1 nên 2x phải là số nhỏ nhất chia 7 dư 6
Suy ra 2x = 6 => x =2
Vậy x = 2
Bài giải
a, Ta có : \(113+x\text{ }⋮\text{ }7\)
\(\Leftrightarrow\text{ }113+x\text{ }\inƯ\left(7\right)\)
Ta có bảng :
\(113+x\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(x\) | \(-114\) | \(-112\) | \(-120\) | \(-106\) |
\(\Rightarrow\text{ }x\in\text{ }\left\{-114\text{ ; }-112\text{ ; }-120\text{ ; }-106\right\}\)
b, \(113+x\text{ }⋮\text{ }13\)
\(\Leftrightarrow\text{ }113+x\inƯ\left(13\right)\)
Ta có bảng :
\(113+x\) | \(-1\) | \(1\) | \(-13\) | \(13\) |
\(x\) | \(-114\) | \(-112\) | \(-120\) | \(-106\) |
\(\Rightarrow\text{ }x\in\text{ }\left\{-114\text{ ; }-112\text{ ; }-120\text{ ; }-106\right\}\)
a) 113 + a chia hết cho 7
\(\Rightarrow\)112 + 1 + a chia hết cho 7
Do 112 chia hết cho 7 \(\Rightarrow\)1 + a chia hết cho 7
\(\Rightarrow\)a = 7k + 6 ( k \(\in\)N )
Vậy a = 7k + 6 ( k \(\in\)N ) thỏa mãn đề bài
113 + a chia hết cho 13
\(\Rightarrow\)104 + 9 + a chia hết cho 13
Do 104 chia hết cho 13 \(\Rightarrow\)9 + a chia hết cho 13
\(\Rightarrow\)a = 13k + 4 ( k \(\in\)N )
Vậy a = 13k + 4 ( k \(\in\)N ) thòa mãn đề bài
k mình nha
Chúc bạn học giỏi
Mình cảm ơn bạn nhiều