Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(1\frac{1}{2}x1\frac{1}{3}x1\frac{1}{4}x1\frac{1}{5}x1\frac{1}{6}=\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x\frac{6}{5}x\frac{7}{6}=\frac{7}{2}=3\frac{1}{2}\)
b/
x=0; y=5
\(=\frac{2013\cdot2015+2015-1}{2015\cdot2013+2014}\)
\(=\frac{2015\cdot2013+\left(2015-1\right)}{2015\cdot2013+2014}\)
\(=\frac{2015\cdot2013+2014}{2015\cdot2013+2014}\)
\(=1.\)
Vậy.........
Xét tử: \(2015+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)
\(=\left(1+1+...+1\right)+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)( trong ngoặc có 2015 số 1 )
\(=\left(1+\frac{2014}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{1}{2015}\right)+1\)
\(=\frac{2016}{2}+\frac{2016}{3}+\frac{2016}{4}+...+\frac{2016}{2015}+\frac{2016}{2016}\)
\(=2016\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)\)
Ghép tử và mẫu \(\frac{2016\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}=2016\)
Vậy \(A=2016\)
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{x\cdot(x+2)}=\frac{100}{101}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{100}{101}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{100}{101}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{101}\)
\(\Leftrightarrow x+2=101\Leftrightarrow x=99\)
Vậy x = 99
\(a\cdot\frac{1}{5}+80\%\cdot a=20152015,15\)
\(\Rightarrow a\cdot\frac{1}{5}+\frac{4}{5}\cdot a=20152015,15\)
\(\Rightarrow a\cdot\left(\frac{1}{5}+\frac{4}{5}\right)=20152015,15\)
\(\Rightarrow a\cdot1=20152015,15\Rightarrow a=20152015,15:1=20152015,15\)