\(a^2-2a+b^2+4b+4c^2-4c+6=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2017

a2 -2a+b2+4b+4c2-4c+6=0

<=>(a2-2a+1)+(b2+4b+4)+(4c2-4c+1)=0

<=>(a-1)2+(b+2)2+(2c-1)2=0

\(\left[{}\begin{matrix}a-1=0\\b+2=0\\2c-1=0\end{matrix}\right.\left[{}\begin{matrix}a=1\\b=-2\\c=\dfrac{1}{2}\end{matrix}\right.\)

7 tháng 12 2017

Ta có: \(a^2-2a+b^2+4b+4c^2-4c+6=\)

\(=\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)\)= 0

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

\(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\left(\forall a;b;c\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\left(a-1\right)^2=0;\left(b+2\right)^2=0;\left(2c-1\right)^2=0\)

\(\Leftrightarrow a=1;b=-2;c=\dfrac{1}{2}\)

27 tháng 11 2019

Câu hỏi của Phạm Thị Thùy Linh - Toán lớp 8 - Học toán với OnlineMath

20 tháng 10 2016

\(a^2+2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow\left(a^2+2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\Leftrightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

\(\begin{cases}\left(a+1\right)^2\ge0\\\left(b+2\right)^2\ge0\\\left(2c-1\right)^2\ge0\end{cases}\)

\(\Rightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\)

\(\Rightarrow\begin{cases}a+1=0\\b+2=0\\2c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=-1\\b=-2\\c=\frac{1}{2}\end{cases}\)

 

21 tháng 10 2016

ths bạn nhé vui

Bài 1: 

\(=\dfrac{1}{\left(x+1\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+10\right)}+\dfrac{1}{\left(x+10\right)\left(x+13\right)}+\dfrac{1}{\left(x+13\right)\left(x+16\right)}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{3}{\left(x+4\right)\left(x+7\right)}+\dfrac{3}{\left(x+7\right)\left(x+10\right)}+\dfrac{3}{\left(x+10\right)\left(x+13\right)}+\dfrac{3}{\left(x+13\right)\cdot\left(x+16\right)}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+13}+\dfrac{1}{x+13}-\dfrac{1}{x+16}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{x+1}-\dfrac{1}{x+16}\right)\)

\(=\dfrac{1}{3}\cdot\dfrac{x+16-x-1}{\left(x+1\right)\left(x+16\right)}=\dfrac{5}{\left(x+1\right)\left(x+16\right)}\)

Bài 2: 

\(\Leftrightarrow a^2-2a+1+b^2+4b+4+4c^2-4c+1=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+4\right)^2+\left(2c-1\right)^2=0\)

Dấu '=' xảy ra khi a=1; b=-4; c=1/2

19 tháng 7 2016

\(a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(=>\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(=>\left(a^2-2.a.1+1^2\right)+\left(b^2+2.b.2+2^2\right)+\left[\left(2c\right)^2-2.2c.1+1^2\right]=0\)

\(=>\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\left(1\right)\)

Vì : \(\left(a-1\right)^2\ge0\) với mọi a

\(\left(b+2\right)^2\ge0\) với mọi b

\(\left(2c-1\right)^2\ge0\) với mọi c

=>\(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\) với mọi a,b,c

Để (1) thì \(\left(a-1\right)^2=\left(b+2\right)^2=\left(2c-1\right)^2=0=>a=1;b=-2;c=\frac{1}{2}\)

Vậy........

26 tháng 6 2016

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+1\right)^2+\left(2c-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+1=0\\2c-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=-1\\c=\frac{1}{2}\end{cases}}\)

19 tháng 1 2020

a) Rút gọn:

\(M=\left(x+3\right).\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)

\(M=\left(x+3\right).\left(x^2-3x+3^2\right)-\left(x^3+54-x\right)\)

\(M=x^3+3^3-\left(x^3+54-x\right)\)

\(M=x^3+27-x^3-54+x\)

\(M=x-27.\)

+ Thay \(x=27\) vào biểu thức M ta được:

\(M=27-27\)

\(\Rightarrow M=0.\)

Vậy giá trị của biểu thức M tại \(x=27\) là: \(0.\)

Chúc bạn học tốt!

19 tháng 1 2020

b) Đề có thiếu không bạn? Nguyễn Bảo Anh

28 tháng 4 2019

\(\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0.\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2b-1\right)^2=0\)

Mà \(\left(a-1\right)^2\ge0\forall a\)\(\left(b+2\right)^2\ge0\forall b\),\(\left(2c-1\right)^2\ge0\forall c\)

\(\Rightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}.\)

28 tháng 4 2019

  a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0

\(\Leftrightarrow\)a2 - 2a + 1 + b2 + 4b + 4 + 4c2 - 4c2 + 1 = 0

\(\Leftrightarrow\)( a - 1 )2 + ( b + 2 )2 + ( 2c - 1 )2 = 0

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}\)

Vậy a = 1 , b = -2 , c = \(\frac{1}{2}\)

9 tháng 10 2017

Câu 2:

\(a^2-2a+b^2+4b+4c^2-4c+6=0\\ \Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\\ \Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\\ Do\text{ }\left(a-1\right)^2\ge0\forall x\\ \left(b+2\right)^2\ge0\forall x\\ \left(2c-1\right)^2\ge0\forall x\\ \Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\forall x\\ \text{Dấu }"="\text{ xảy ra khi }:\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-1=0\\b+2=0\\2c-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(a=1;b=-2;c=\dfrac{1}{2}\)

26 tháng 5 2018

tích đi rồi ta làm

26 tháng 5 2018

tích đi bạn