Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a:b:c=2:5:3\)
\(\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\) và \(2a+b-4c=-21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{3}=\frac{2a+b-4c}{2.2+5-4.3}=\frac{-21}{-3}=7\)
\(\Rightarrow\begin{cases}\frac{a}{2}=7\Rightarrow a=7.2=14\\\frac{b}{5}=7\Rightarrow b=7.5=35\\\frac{c}{3}=7\Rightarrow c=7.3=21\end{cases}\)
Vậy ................
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{2a+b-4c}{4+5-12}=\frac{-21}{-3}=7\)
\(\frac{2a}{4}=7\Rightarrow a=\frac{7\times4}{2}=14\)
\(\frac{b}{5}=7\Rightarrow b=5\times7=35\)
\(\frac{4c}{12}=7\Rightarrow c=\frac{12\times7}{4}=21\)
\(a\div b\div c=2\div5\div3\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{2a+b-4c}{4+5-12}=\frac{-21}{-3}=7\)
\(\frac{2a}{4}=7\Rightarrow a\frac{7\times4}{2}=14\)
\(\frac{b}{5}=7\Rightarrow b=7\times5=35\)
\(\frac{4c}{12}=7\Rightarrow\frac{12\times7}{4}=21\)
Vậy \(a=14;b=35;c=21\)
Chúc bạn học tốt ^^
Ta có : \(a:b:c=2:5:3\)
Từ đó : \(\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{c}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2}=\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{c}{3}=\frac{2a+b-4c}{4+5-12}=\frac{-21}{-3}=7\)
\(\Leftrightarrow\frac{a}{2}=7\Rightarrow a=14\)
\(\Leftrightarrow\frac{b}{5}=7\Rightarrow b=35\)
\(\Leftrightarrow\frac{c}{3}=7\Rightarrow c=21\)
Vậy 3 số cần tìm là 14;35;21
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
\(=>\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Khi đó : \(2a^2+2b^2-3c^2=-100\)
\(< =>2\left(3k\right)^2+2\left(4k\right)^2-3\left(5k\right)^2=-100\)
\(< =>2.9.k^2+2.16.k^2-3.25.k^2=-100\)
\(< =>19k^2+32k^2-75k^2=-100\)
\(< =>k^2\left(51-75\right)=-100\)
\(< =>-24k^2=-100\)
\(< =>k^2=\frac{25}{6}\)\(< =>k=\pm\frac{5}{\sqrt{6}}\)
Với \(k=\frac{5}{\sqrt{6}}\)thì \(\hept{\begin{cases}a=\frac{15}{\sqrt{6}}\\b=\frac{20}{\sqrt{6}}\\c=\frac{25}{\sqrt{6}}\end{cases}}\)
Với \(k=-\frac{5}{\sqrt{6}}\)thì \(\hept{\begin{cases}a=-\frac{15}{\sqrt{6}}\\b=-\frac{20}{\sqrt{6}}\\c=-\frac{25}{\sqrt{6}}\end{cases}}\)
Vậy ta có 2 bộ số sau \(\left\{\frac{15}{\sqrt{6}};\frac{20}{\sqrt{6}};\frac{25}{\sqrt{6}}\right\};\left\{-\frac{15}{\sqrt{6}};-\frac{20}{\sqrt{6}};-\frac{25}{\sqrt{6}}\right\}\)
Từ đề bài => \(\frac{a}{4}=\frac{b}{3}=\frac{c}{5}\)\(\Leftrightarrow\frac{2a}{8}=\frac{c}{5}=\frac{2a-c}{8-5}=\frac{150}{3}=50\)
Khi đó \(\hept{\begin{cases}a=200\\c=250\end{cases}}\)=> \(b=150\)
Vậy (a,b,c) = ( 200;150;250)
a, a:b:c=5:7:8
=> a/5=6/7=c/8
Áp dụng tính chất của tỉ số bằng nhau ta có:
a+b-c/5+7-8=2,4/4=3/5
=> a/5=3/5 b/7=3/5 c/8=3/5
=>a=3 =>b21/5 => c=24/5
b, Câu b sai đề ak bạn
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{20}=\dfrac{b}{10}=\dfrac{c}{15}=\dfrac{2a-3b+4c}{2\cdot20-3\cdot10+4\cdot15}=\dfrac{330}{70}=\dfrac{33}{7}\)
Do đó: a=660/7; b=300/7; c=495/7
\(a:b:c=2:5:3\)
\(\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{c}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau; ta có :
\(\frac{a}{2}=\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{c}{3}=\frac{2a+b-4c}{4+5-12}=-\frac{21}{-3}=7\)
\(\frac{a}{2}=7\Rightarrow a=14\)
\(\frac{b}{5}=7\Rightarrow b=35\)
\(\frac{c}{3}=7\Rightarrow c=21\)