Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)
Do đó: x=15; y=12; z=9
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)
Do đó: a=5/2; b=2; c=7/2
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)
Do đó: a=40/9; b=50/9; c=20/9
f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)
Do đó: a=-8; b=-12; c=-16
\(a,\frac{a}{12}=\frac{b}{9}=\frac{c}{5}\)
Đặt \(\frac{a}{12}=\frac{b}{9}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=12k\\b=9k\\c=5k\end{cases}}\)
Ta có \(abc=12k\cdot9k\cdot5k=20\)
\(\Rightarrow540k^3=20\)
\(\Rightarrow k^3=\frac{20}{540}=\frac{1}{27}\)
\(\Rightarrow k=\frac{1}{3}\)
Với \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}a=\frac{1}{3}\cdot12=4\\b=\frac{1}{3}\cdot9=3\\c=5\cdot\frac{1}{3}=\frac{5}{3}\end{cases}}\)
a) Đặt \(\frac{a}{12}=\frac{b}{9}=\frac{c}{5}=k\)
\(\rightarrow a=12k,b=9k,c=5k\)
Ta có: \(abc=20\)
\(\rightarrow12k\cdot9k\cdot5k=20\)
\(\rightarrow540\cdot k^3=20\rightarrow k^3=\frac{1}{27}\)
\(\rightarrow k^3=\left(\frac{1}{3}\right)^3\rightarrow k=\frac{1}{3}\)
\(a=12k\rightarrow a=12\cdot\frac{1}{3}=4\)
\(b=9k\rightarrow b=9\cdot\frac{1}{3}=3\)
\(c=5k\rightarrow c=5\cdot\frac{1}{3}=\frac{5}{3}\)
Vậy \(a=4,b=3,c=\frac{5}{3}\)
Bài 1:
a) Ta có: \(\frac{3}{8}+\frac{-5}{6}\)
\(=\frac{3}{8}-\frac{5}{6}\)
\(=\frac{9}{24}-\frac{20}{24}\)
\(=-\frac{11}{24}\)
b) Ta có: \(\frac{15}{12}-\frac{-1}{4}\)
\(=\frac{15}{12}+\frac{1}{4}\)
\(=\frac{15}{12}+\frac{3}{12}\)
\(=\frac{18}{12}=\frac{3}{2}\)
Bài 2:
a) Ta có: \(-\frac{1}{12}-\left(2\frac{5}{8}-\frac{1}{3}\right)\)
\(=-\frac{1}{12}-\frac{21}{8}+\frac{1}{3}\)
\(=\frac{-2}{24}-\frac{63}{24}+\frac{8}{24}\)
\(=\frac{-57}{24}\)
\(=-\frac{19}{8}\)
b) Ta có: \(\frac{-5}{6}-\left(\frac{-3}{8}+\frac{1}{10}\right)\)
\(=\frac{-5}{6}+\frac{3}{8}-\frac{1}{10}\)
\(=\frac{-100}{120}+\frac{45}{120}-\frac{12}{120}\)
\(=\frac{-67}{120}\)
c) Ta có: \(-1.75-\left(\frac{-1}{9}-2\frac{1}{18}\right)\)
\(=-\frac{7}{4}+\frac{1}{9}+\frac{37}{18}\)
\(=\frac{-63}{36}+\frac{4}{36}+\frac{74}{36}\)
\(=\frac{15}{36}=\frac{5}{12}\)
i) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\begin{cases}a=2k\\b=3k\\c=4k\end{cases}\)
Vì a3 + b3 + c3 = 792 => 8k3 + 27k3 + 64k3 = 792 => 99k3 = 792 => k3 = 8 => k = 2
=> \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)
Bài g tương tự bài i
e) Từ 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\)
Đặt \(k=\frac{a}{7}=\frac{b}{3}\Rightarrow\begin{cases}a=7k\\b=3k\end{cases}\)
Vì a2 - b2 = 160 => 49k2 - 9k2 = 160 => 40k2 = 160 => k = 2 hoặc -2
Với k = 2 => \(\begin{cases}a=14\\b=6\end{cases}\)
Với k = -2 => \(\begin{cases}a=-14\\b=-6\end{cases}\)