Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐỊnh lí Carnot ( Các -nô )
b) Ta có : \(2T = AB'^2 + A'C^2 + AB'^2 +B'C^2 +AC'^2 + BC'^2 \geq \frac{1}{2} ( ( A'B + A'C)^2 + (C'A +C'B )^2 + (B'A +B'C)^2 ) = \frac{1}{2} ( AB^2 +AC^2 + BC^2 )/)
O là trọng , trực,.. tâm của tam giá và tam giác đó đều .
Chúc em học tốt, thân!
I don't now
mik ko biết
sorry
......................
có ở trong câu hỏi tương tự nhé
\(S=13\left(\frac{a}{18}+\frac{c}{24}\right)+13\left(\frac{b}{24}+\frac{c}{48}\right)+\left(\frac{a}{9}+\frac{b}{6}+\frac{2}{ab}\right)+\left(\frac{a}{18}+\frac{c}{24}+\frac{2}{ac}\right)+\left(\frac{b}{8}+\frac{c}{16}+\frac{2}{bc}\right)+\left(\frac{a}{9}+\frac{b}{6}+\frac{c}{12}+\frac{8}{abc}\right)\)Cô si các ngoặc là được nhé
abc - ac = 2.cb + bc
= abc - ac - 2cb - bc = 0
= abc - ac - 3bc = 0
= c ( ab - a - 3b ) = 0
= c = 0 hoặc ab - a - 3b = 0
c = 0 nên vế trái và phải bằng 0
=> c = 0 và a , b thuộc Q
~ Học tốt ~
trả lời
c=0
a,b thuộc q
chúc bn học tốt