Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Mình nghĩ câu a là a+2b-3c=-20
a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5
a/2 = 5 => a = 2 . 5 = 10
b/3 = 5 => b = 5 . 3 = 15
c/4 = 5 => c = 5 . 4 = 20
Vậy a = 10; b = 15; c = 20
b) Ta có: a/2 = b/3 => a/10 = b/15
b/5 = c/4 => b/15 = c/12
=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7
a/10 = -7 => a = -7 . 10 = -70
b/15 = -7 => b = -7 . 15 = -105
c/12 = -7 => c = -7 . 12 = -84
Vậy a = -70; b = -105; c = -84.
Từ đẳng thức \(\frac{a-1}{5}=\frac{b-2}{3}=\frac{c-2}{2}\)
\(\Rightarrow\frac{a-1}{5}=\frac{2b-4}{6}=\frac{c-2}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a-1}{5}=\frac{b-2}{3}=\frac{c-2}{2}=\frac{2b-4}{6}=\frac{a-1+2b-4-c+2}{5+6-2}=\frac{\left(a+2b-c\right)-3}{9}\)
\(=\frac{6-3}{9}=\frac{1}{3}\)
\(\Rightarrow a=\frac{5.1}{3}+1=\frac{5}{3}+1=\frac{8}{3};\)
\(b=\frac{3.1}{3}+2=1+2=3;\)
\(c=\frac{2.1}{3}+2=\frac{2}{3}+2=\frac{8}{3}\)
Vậy \(a=\frac{8}{3};b=3;c=\frac{8}{3}\)
viết lại đề bài
=> \(\frac{a-1}{5}=\frac{2\left(b-2\right)}{6}=\frac{c-2}{2}\)
ÁP DỤNG TÍNH CHẤT DÃU TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{a-1}{5}=\frac{2b-4}{6}=\frac{c-2}{2}=\frac{a-1+2b-2-c-2}{5+6-2}=\frac{a+2b-c-1-2-2}{9}\)
=> \(\frac{6-1-2-2}{9}=\frac{1}{9}\)
+ \(\frac{a-1}{5}=\frac{1}{9}=>a=\frac{14}{9}\)
tương tự tìm b,c
* học tốt nha #
a) \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}=k\)
\(\Rightarrow\hept{\begin{cases}a=2k+1\\b=3k-2\\c=4k+3\end{cases}}\)thay vào \(3a-2b+c=-46\)
\(\Rightarrow3\left(2k+1\right)-2\left(3k-2\right)+4k+3=-46\)
\(\Leftrightarrow6k+3-\left(6k-4\right)+4k+3=-46\)
\(\Leftrightarrow4k+10=-46\Rightarrow4k=-56\Rightarrow k=-14\)
\(\Rightarrow\hept{\begin{cases}a=2.\left(-14\right)+1=-27\\b=3.\left(-14\right)-2=-44\\c=4.\left(-14\right)+3=-53\end{cases}}\)
Vậy \(a=-27;b=-44;c=-53\)
b) \(\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\left(1\right)\)
\(\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}\)
\(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
\(\Rightarrow\hept{\begin{cases}a=12.6=72\\b=12.15=180\\c=12.20=240\end{cases}}\)
Vậy \(a=72;b=180;c=240\)
a, \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}\)
\(\Rightarrow\frac{3a-3}{6}=\frac{2b+4}{6}=\frac{c-3}{4}=\frac{3a-3-2b-4+c-3}{6-6+4}=\frac{\left(3a-2b+c\right)-\left(3+4+3\right)}{4}=\frac{-46-10}{4}=-14\)
=> \(\hept{\begin{cases}\frac{a-1}{2}=-14\\\frac{b+2}{3}=-14\\\frac{c-3}{4}=-14\end{cases}}\Rightarrow\hept{\begin{cases}a=-27\\b=-44\\c=-53\end{cases}}\)
b) \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\\\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\end{cases}\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
=> a = 72, b=180, c=240
Áp dụng tích chất dãy tỉ số bằng nhau ta có :
\(\frac{a-1}{5}=\frac{b-2}{3}=\frac{c-2}{2}=\frac{2b-4}{6}=\frac{a-1+2b-4-c+2}{5+6-2}=\frac{a+2b-c-3}{9}=\frac{3}{9}=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}a-1=\frac{1}{3}.5=\frac{5}{3}\Rightarrow a=\frac{8}{3}\\b-2=\frac{1}{3}.3=1\Rightarrow b=3\\c-2=\frac{1}{3}.2=\frac{2}{3}\Rightarrow c=\frac{8}{3}\end{cases}}\)
P/s : Lm đại :)) Sai bỏ qa :>
Đặt a-1/5=b-2/3=c-2/2=k
Suy ra:a=5k+1
b=3k+2
c=2k+2
Thay vào ta có:
5k+1+2(3k+2)-2k-2=6(đổi dấu đúng nhé)
(=)5k+1+6k+4-2k-2=6(=)9k+3=6(=)9k=9(=)k=1
Suy ra a=6,b=5,c=4.( cho mình nhé)
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
Nếu đề đúng.
\(a^2+b^3-\sqrt{5^2}c=a+b^3-\frac{5}{3}c\)
<=> \(a+\frac{10}{3}c=a^2\)
Mặt khác:
\(a=\frac{3}{2}c\)=> \(a=\frac{\frac{10}{3}c}{\frac{20}{9}.}=\frac{a+\frac{10}{3}c}{1+\frac{20}{9}}=\frac{a^2}{\frac{29}{9}}\)
=> \(\frac{29}{9}a=a^2\Leftrightarrow\orbr{\begin{cases}a=0\\a=\frac{29}{9}\end{cases}}\)
Với a=0 => b=c =0
Với \(a=\frac{29}{9}\Rightarrow b=\frac{29}{18};c=\frac{58}{27}\)