Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Zới mọi \(x,y>0\), áp dụng BĐT AM-GM ta có
\(x^2+y^2=\frac{2xy\left(x^2+y^2\right)}{2xy}\le\frac{\frac{\left(2xy+x^2+y^2\right)^2}{4}}{2xy}=\frac{\left(x+y\right)^4}{8xy}\)
sử dụng kết quả trên ta thu đc các kết quả sau
\(a^2+c^2\le\frac{\left(a+c\right)^4}{8ac}=\frac{\left(a+c\right)^4bd}{8abcd}\le\frac{\left(a+c\right)^4\left(b+d\right)^2}{32abcd}\)
\(b^2+d^2\le\frac{\left(b+d\right)^4}{8bd}=\frac{\left(b+d\right)^4ac}{8abcd}\le\frac{\left(b+d\right)^4\left(c+a\right)^2}{32abcd}\)
Như zậy ta chỉ còn cần CM đc
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}+\frac{1}{da}\ge\frac{\left(a+c\right)^2\left(b+d\right)^2\left[\left(a+c\right)^2+\left(b+d\right)^2\right]}{32abcd}\)
BĐT trên tương đương zới
\(\frac{\left(a+c\right)\left(b+d\right)}{abcd}\ge\frac{\left(a+c\right)^2\left(b+d\right)^2\left[\left(a+c\right)^2+\left(b+d\right)^2\right]}{32abcd}\)
hay
\(\left(a+c\right)\left(b+d\right)\left[\left(a+c\right)^2+\left(b+d\right)^2\right]\le32\)
đến đây bạn lại sử dụng kết quả trên ta có ĐPCM nhá
Dễ thấy đẳng thức xảy ra khi a=b=c=d=1
Áp dụng BĐT Svacxơ:
\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{cd}+\dfrac{1}{da}\ge\dfrac{4}{ab+bc+cd+da}\)
Áp dụng BĐT Cô-si:
\(\dfrac{4}{ab+bc+cd+da}\ge\dfrac{4}{a^2+b^2+c^2+d^2}\)
Ta cần c/m: \(\dfrac{4}{a^2+b^2+c^2+d^2}\ge a^2+b^2+c^2+d^2\)
\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)^2\ge4\)
Áp dụng BĐT Svacxơ: \(\left(\dfrac{a^2}{1}+\dfrac{b^2}{1}+\dfrac{c^2}{1}+\dfrac{d^2}{1}\right)^2\ge\dfrac{\left(a+b+c+d\right)^{2^2}}{16}\)
mà a+b+c+d=4 nên: \(\dfrac{\left(a+b+c+d\right)^4}{16}\ge\dfrac{64}{16}=4=VP\)
Vậy ta có đpcm.
2/ Ta có \(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)(luôn đúng)
Vậy bđt ban đầu được chứng minh.
\(a^2+b^2+c^2+d^2=1\) và \(ab+bc+cd+da=1\)
\(\Rightarrow a^2+b^2+c^2+d^2=ab+bc+cd+da\)
\(\Rightarrow a^2+b^2+c^2+d^2-ab-bc-cd-da=0\)
\(\Rightarrow2\left(a^2+b^2+c^2+d^2-ab-bc-cd-da\right)=0.2\)
\(\Rightarrow2a^2+2b^2+2c^2+2d^2-2ab-2bc-2cd-2da=0\)
\(\Rightarrow a^2+a^2+b^2+b^2+c^2+c^2+d^2+d^2-2ab-2bc-2cd-2da=0\)
\(\Rightarrow\left(a^2-2ab-b^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2cd+d^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(c-d\right)^2=0\)
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\left(a-d\right)^2\ge0\)
\(\left(b-c\right)^2\ge0\)
\(\left(c-d\right)^2\ge0\)
Mà tổng của chúng đều là 0
\(\Rightarrow a-b=0\Rightarrow a=b\)
\(\Rightarrow a-d=0\Rightarrow a=d\)
\(\Rightarrow b-c=0\Rightarrow b=c\)
\(\Rightarrow c-d=0\Rightarrow c=d\)
\(\Rightarrow a=b=c=d\)
Thay: \(a^2+b^2+c^2+d^2=1\) ta được
\(\Rightarrow a^2+a^2+a^2+a^2=1\)
\(\Rightarrow4a^2=1\)
\(\Rightarrow a^2=\frac{1}{4}\)
\(\Rightarrow a\in\left\{\pm\frac{1}{2}\right\}\)