\(\frac{11}{7}>\frac{a}{b}>\frac{23}{29}\) và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

P/s : 8b-9a=31

Vì \(\frac{11}{7}>\frac{a}{b}>\frac{23}{29}\)

\(8b-9a=31\)(1)

\(\Rightarrow9a=8b-31\)

\(a=\frac{8b-31}{9}\)vì \(a\in N\)

\(8b-31\ge9\)

\(\Leftrightarrow8b\ge40\Leftrightarrow b\ge5\)

\(\Rightarrow\frac{11}{7}>\frac{8b-31}{9b}>\frac{23}{29}\)

\(\Leftrightarrow\frac{11}{7}>\frac{8}{9}>\frac{23}{29}\)

Mà  \(7>\frac{8}{9}-\frac{31}{9b}< \frac{11}{7}\)

     \(\frac{8}{9}-\frac{11}{7}< \frac{31}{9b}\)

      ...... \(\frac{-43}{63}< \frac{31}{9b}\)

\(\frac{-43}{7}< \frac{31}{b}\)

\(\Leftrightarrow-43b< 31.7\)

\(b>\frac{31.7}{-43}=\frac{-217}{43}\)

\(\Rightarrow b\in N\Leftrightarrow b>0\)

Mà \(\frac{8}{9}-\frac{31}{9b}>\frac{23}{29}\Leftrightarrow\frac{8}{9}-\frac{23}{29}>\frac{31}{9b}\)

\(\Leftrightarrow\frac{25}{261}>\frac{31}{9b}\Rightarrow25.9b>31.261\)

\(\Leftrightarrow b>\frac{31.261}{25.9}=\frac{899}{25}=35,9\)

Vậy \(5< b< \frac{899}{25}\)

\(\Rightarrow5< b< 35\)

Đến đây bạn lập bảng .

10 tháng 5 2017

Em chuyển 9x = 8y - 31 thành 8b - 9b = 31 cho dễ làm ạ 

Từ \(8b-9a=31\Rightarrow b=\frac{31+9a}{8}=\frac{32-1+8a+a}{8}\in N\)

\(\Rightarrow a-1⋮8\Rightarrow a=8k+1\left(k\in N\right)\Rightarrow b=\frac{31+72k+9}{8}=9k+5\)

\(\Rightarrow\frac{a}{b}=\frac{8k+1}{9k+5}\)Mà \(\frac{11}{17}< \frac{a}{b}< \frac{2329\Rightarrow11}{17}< \frac{8k+1}{9k+5}< \frac{23}{29} \)

+ Với \(\frac{11}{17}< \frac{8k+1}{9k+5}\Rightarrow11.\left(9k+5\right)< 17.\left(8k+1\right)\Rightarrow99k+55< 136k+17\Rightarrow37k>38\)

\(\Rightarrow k>\frac{38}{37}\Rightarrow k>1\)                                     (1)

Với \(\frac{8k+1}{9k+5}< \frac{23}{29}\Rightarrow29.\left(8k+1\right)< 23.\left(9k+5\right)\Rightarrow232k+29< 207k+115\Rightarrow25k< 86\)

\(\Rightarrow k< \frac{86}{25}\Rightarrow k< 4\)                                       (2)

Từ (1) và (2) suy ra \(1< k< 4\)mà \(k\in N\)nên \(k\in\left\{2;3\right\}\)

Với \(k=2\)thì \(\frac{a}{b}=\frac{17}{25}\)

Với \(k=3\)thì \(\frac{a}{b}=\frac{25}{32}\)

Vậy............

4 tháng 11 2019

t có cách đoán nè nhưng hơi mất công xíu:) Với đk phải có máy tính  casio:)

4 tháng 11 2019

tth_new OK mem,nhà có casio.t sẽ hậu tạ:) Nhưng chả biết hậu tạ ntn nữa.

8 tháng 1 2017

Phải có thêm a>b nữa. Không thì làm không được. Thử thế a = 1, b = 2 là thấy nó sai

8 tháng 1 2017

chắc là đề sai

8 tháng 7 2018

\(9b\left(b-a\right)=4a^2\Rightarrow9b^2-9ab=4a^2\Rightarrow9b^2-9ab-4a^2=9b^2-9ab+\frac{9}{4}a^2-\frac{25}{4}a^2=0\)

\(\Rightarrow\left(3b\right)^2-2\cdot3b\cdot\frac{3}{2}a+\left(\frac{3}{2}a\right)^2-\left(\frac{5}{2}a\right)^2=\left(3b-\frac{3}{2}a\right)^2-\left(\frac{5}{2}a\right)^2=0\)

\(\Rightarrow\left(3b-\frac{3}{2}a-\frac{5}{2}a\right)\left(3b-\frac{3}{2}a+\frac{5}{2}a\right)=\left(3b-4a\right)\left(3b+a\right)=0\Rightarrow\hept{\begin{cases}3b=4a\\3b=-a\end{cases}}\)

\(3b=4a\Rightarrow b=\frac{4}{3}a\Rightarrow M=\frac{a-b}{a+b}=\frac{a-\frac{4}{3}a}{a+\frac{4}{3}a}=-\frac{\frac{1}{3}a}{\frac{7}{3}a}=-\frac{1}{7}\)

\(3b=-a\Rightarrow b=-\frac{a}{3}\Rightarrow M=\frac{a-b}{a+b}=\frac{a--\frac{a}{3}}{a-\frac{a}{3}}=\frac{\frac{4}{3}a}{\frac{2}{3}a}=2\)

19 tháng 2 2017

Ta có : 

\(\frac{1}{n+1}>\frac{1}{n+n}=\frac{1}{2n}\)

\(\frac{1}{n+2}>\frac{1}{n+n}=\frac{1}{2n}\)

\(\frac{1}{n+3}>\frac{1}{n+n}=\frac{1}{2n}\)

......................

\(\frac{1}{n+n}=\frac{1}{n+n}=\frac{1}{2n}\)

Cộng vế với vế ta được :

\(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+....+\frac{1}{n+n}>\frac{1}{2n}+\frac{1}{2n}+\frac{1}{2n}+....+\frac{1}{2n}\)( có n số \(\frac{1}{2n}\) )

\(\Rightarrow\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+....+\frac{1}{n+n}>\frac{n}{2n}=\frac{1}{2}\) ( đpcm )

18 tháng 5 2018

Do a,b,c đối xứng , giả sử \(a\ge b\ge c\) \(\Rightarrow\hept{\begin{cases}a^2\ge b^2\ge c^2\\\frac{a}{b+c}\ge\frac{b}{a+c}\ge\frac{c}{a+b}\end{cases}}\)

Áp dụng BĐT Trư - bê - sép , ta có :

\(a^2.\frac{a}{b+c}+b^2.\frac{b}{a+c}+c^2.\frac{c}{b+c}\ge\frac{a^3+b^3+c^3}{3}.\left(\frac{a}{b+C}+\frac{b}{a+c}+\frac{c}{a+b}\right)=\frac{1}{3}.\frac{3}{2}=\frac{1}{2}\)

\(vậy\) \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{1}{2}\)( Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

18 tháng 5 2018

Chebyshev như vầy nhé : 

Ta có : 

\(3.\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\left(a^2+b^2+c^2\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+c}\right)=\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

Áp dụng bất đẳng thức Nesbit , ta có :

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Suy ra : \(3.\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\frac{3}{2}\)

<=> \(\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\frac{1}{2}\)

Đẳng thức xảy ra <=> a = b = c = \(\frac{1}{\sqrt{3}}\)

21 tháng 8 2017

Huy giật mình, đôi bàn tay run run, anh vội vung ngay con dao cầm trong tay mà chặt vào cổ con gà.

Cái cổ con gà đứt phay bay vào đám gio bếp, mà miệng nó vẫn không ngừng kêu lên những âm thanh réo như tiếng chim lợn.

Được một lúc thì tiếng kêu của nó cũng dần im bặt, chỉ còn lại cái âm thanh lách tách của củi lửa bên dưới đáy nồi.

21 tháng 8 2017

Cái cổ con gà đứt phay bay vào đám gio bếp, mà miệng nó vẫn không ngừng kêu lên những âm thanh réo như tiếng chim lợn.

Được một lúc thì tiếng kêu của nó cũng dần im bặt, chỉ còn lại cái âm thanh lách tách của củi lửa bên dưới đáy nồi.

Trên mặt Huy thì giờ này đều đã lấm tấm mồ hôi, anh nhìn lại từ cổ con gà mà mình vừa chặt đứt đầu đang chảy ra những dòng máu đỏ tươi mà run rẩy. Chim lợn là giống loài được quan niệm là đại diện cho điềm hung của người Việt, mỗi khi chim lợn kêu lên, là báo hiệu rằng trong nhà có người sắp chết. Vậy liệu có khi nào, đây chính là một loại điềm báo hay không?