Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
(a+3c)+(a+2b)=8+9
\(\Rightarrow\)2a+2b+3c=17
\(\Rightarrow2\left(a+b+c\right)+c=17\)
+, Nếu a+b+c đạt max thì 2(a+b+c) đạt max\(\Rightarrow\)c đạt min\(\Rightarrow\)c=0
\(\Rightarrow\)GTLN a+b+c=8,5
Vậy...
+Nếu a+b+c đạt min thì 2(a+b+c) đạt min \(\Rightarrow\)c đạt max \(\Rightarrow\)c=17
\(\Rightarrow\)GTLN a+b+c =0
Vậy ....
\(a)\) Ta có :
\(A=\left|x-1,35\right|\ge0\)
Dấu "=" xảy ra khi \(\left|x-1,35\right|=0\)
\(\Rightarrow\)\(x-1,35=0\)
\(\Rightarrow\)\(x=1,35\)
Vậy \(A_{min}=0\) khi \(x=1,35\)
\(b)\) Ta có :
\(\left|2x-8\right|\ge0\)
\(\Rightarrow\)\(\frac{3}{14}-\left|2x-8\right|\le\frac{3}{14}\)
Dấu "=" xảy ra khi \(\left|2x-8\right|=0\)
\(\Rightarrow\)\(2x-8=0\)
\(\Rightarrow\)\(2x=8\)
\(\Rightarrow\)\(x=4\)
Vậy \(B_{max}=\frac{3}{14}\) khi \(x=4\)
Chúc bạn học tốt ~