Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Ta có:\(A=x^2-2x+5\)
\(A=x^2-2x+1+4\)
\(A=\left(x-1\right)^2+4\ge4\)
Dấu = xảy ra khi x - 1 = 0 ; x = 1
Vậy Min A =4 khi x =1
Câu 2:
Ta có:\(B=-2x^2-4x+1\)
\(=-2\left(x^2+2x-\frac{1}{2}\right)\)
\(=-2\left(x^2+2x+1-\frac{3}{2}\right)\)
\(=3-2\left(x+1\right)^2\le3\)
Dấu = xảy ra khi x + 1 =0 ; x=-1
Vậy Max A = 3 khi x = -1
Bn tham khảo bài này nè:A,tìm giá trị nhỏ nhất của BT:A=(x^2-3x+1)(x^2-3x-1) b, tìm giá trị lớn nhất của biểu thức:B=-x^2-4x-y^2+2y?
a)
bạn nhìn vào biểu thức sẽ thấy có xuất hiện hằng đẳng thức (a-b)*(a+b)
A = (( x^2 - 3x) +1)*(( x^2 - 3x) - 1)
A = ( x^2 -3x)^2 -1 >= -1 (>= là lớn hơn hoặc bằng)
Vậy giá trị nhỏ nhát của A là -1 khi ( x^2 - 3x) = 0 hay x=o hoặc x=3
b)
B = -x^2 - 4x -4 -y^2 + 2y -1 +5 ( thêm vào bớt ra)
B = -( x^2+4x+4) -( y^2 - 2y 1) + 5
B = 5 - (( x + 2 )^2 + ( y - 1)^2) <= 5 (<= là bé hơn hoặc bằng)
Vậy giá trị lớn nhất cảu B là 5 khi ( x + 2 )^2 = 0 và ( y -1 )^2 = 0 hay x = -2 và y = 1
* Lưu ý cho bạn một chút nè.Nếu bài toán nào yêu cầu chúng ta tìm GTNN hay GTLN thì pảhi dựa vào hằng đẳng thức mủ hai là nhiều. :):)
1. \(A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0\forall x\) nên \(\left(x-1\right)^2+4\ge4\forall x\)
Dấu "=" \(\Leftrightarrow\) x - 1 = 0 \(\Leftrightarrow\) x = 1
Vậy ...
2. \(B=-2x^2-4x+1\)
\(=-2\left(x^2+2x-\dfrac{1}{2}\right)\)
\(=-\left(x^2+2x+1-\dfrac{3}{2}\right)\)
\(=-\left(x+1\right)^2+\dfrac{3}{2}\le\dfrac{3}{2}\forall x\)
Dấu "=" \(\Leftrightarrow\) x + 1 = 0 \(\Leftrightarrow\) x = -1
Vậy ...
3. \(C=\dfrac{3}{-x^2+2x-4}\)
\(=-\dfrac{3}{x^2-2x+4}\)
\(=-\dfrac{3}{\left(x^2-2x+1\right)+3}\)
\(=-\dfrac{3}{\left(x-1\right)^2+3}\)
Vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+3\ge3\)
\(\Rightarrow-\dfrac{3}{\left(x-1\right)^2+3}\ge-\dfrac{3}{3}=-1\)
Dấu "=" \(\Leftrightarrow\) x - 1 = 0 \(\Leftrightarrow\) x = 1
Vậy ...
1a) 3x2+2x-1=3x2-x+3x-1=x(3x-1)+(3x-1)=(3x-1)(x+1)
b)=x3+3x2+3x2+9x+2x+6=x2(x+3)+3x(x+3)+2(x+3)=(x+3)(x2+3x+2)=(x+3)(x2+2x+x+2)=(x+3)[x(x+2)+(x+2)]=(x+3)(x+2)(x+1)
c)=(x4+2x2+1)-4=(x2+1)2-22=(x2+1-2)(x2+1+2)=(x2-1)(x2+3)=(x+1)(x-1)(x2+3)
d)=a(b+c)+(b+c)2=(b+c)(a+b+c)
e)=(a-b)3+c3+3ab(a-b)+3abc=(a-b+c)(a2-2ab+b2+2ac-2bc+c2)+3ab(a-b+c)=(a-b+c)(a2+ab+b2+2ac-2bc+c2)=(a-b+c)(b-c)2(a2+ab+2ac)
8)12 ' = 1 / 5 (h)
3 ' = 1 / 20 (h).
gọi x ( km/h) là vận tốc người II ; y ( km) là chiều dài đoạn đường đua.
( điều kiện : x >= 3 ; y > 0)
vận tốc motô I là x + 15 ( km/h)
vận tốc motô III là x - 3 ( km/h)
thời gian của người II là y / x (h)
thời gian của người I là y / ( x + 15) (h)
thời gian của người III là y / ( x - 3) (h)
theo đề bài ta có hệ phương trình
y / x - y / ( x + 15) = 1 / 5
- y / x + y / ( x - 3) = 1 / 20
<=>
( xy + 15y - xy) / x ( x + 15) = 1 / 5
( xy - xy + 3y) / x ( x - 3) = 1 / 20
<=>
15y / x ( x + 15) = 1 / 5 ( điều kiện: x # 0 ; x# -15, x# 3 để mẫu hợp lý)
3y / x ( x - 3) = 1 / 20
<=>
75y = x ( x + 15)
60y = x ( x - 3)
<=> (*)
75y / x = x + 15 ( tách ra x + 15 = x - 3 + 18)
60y / x = x - 3
đặt a = 15y / x ( x#0) ; b= x - 3
(*) <=>
5a = b + 18
4a = b
<=>
a = 18
b = 72
=>
x = 75( nhận)
y = 90 (nhận )
vậy vận tốc người I là 75 + 15 = 90 (km/h)
vận tốc người III là 75 - 3 = 72 (km/h)
vận tốc người II là 75 (km/h)
thời gian người II là 90 / 75 = 1,2 (h)
thời gian người I là 90 / ( 75 + 15) = 1 (h)
thời gian người III là 90 / ( 75 - 3) = 1,25 (h)
Gọi là đường thẳng đi qua và song song với và giả sử .
Vì là phân giác của và nên .
Theo định lý Thales, ta có
Từ đó suy ra
Vậy theo định lý Ceva, các đường thẳng , và đồng qu
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{a+c-b}{b}+2=\frac{c+b-a}{a}+2\)
\(=\frac{a+b}{c}-1+2=\frac{a+c}{b}-1+2=\frac{c+b}{a}-1+2\)
\(=\frac{a+b}{c}+1=\frac{a+c}{b}+1=\frac{c+b}{a}+1\)
\(=\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\)Thay vào \(P\)ta được :
\(P=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a\cdot2a\cdot2a}{a^3}=\frac{8a^3}{a^3}=8\)
1.Với \(x-1\ge0\Rightarrow x\ge1\)
\(\Rightarrow x^2-3x+2+x-1=0\Rightarrow x^2-2x+1=0\)
\(\Rightarrow\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
Với \(x-1< 0\Rightarrow x< 1\)
\(\Leftrightarrow x^2-3x+2-x+1=0\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}\left(l\right)}\)
Vậy x=1
2.\(\frac{x+2}{x-2}-\frac{1}{x}-\frac{2}{x\left(x-2\right)}=0\)
ĐK \(x\ne0\)và\(x\ne2\)
\(\Leftrightarrow\frac{x\left(x+2\right)-\left(x-2\right)-2}{x\left(x-2\right)}=0\Rightarrow x^2+2x-x+2-2=0\)
\(\Rightarrow x^2+x=0\Rightarrow x\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-1\left(tm\right)\end{cases}}\)
Vậy x=-1