Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài ở đâu zậy???????????? của cô tuyền ak????
568568769
f(0) ⋮ 7 => e ⋮ 7
=> g(x) = ax4 + bx3 + cx2 + dx ⋮ 7 ∀ x nguyên
g(1) = a + b + c + d ⋮ 7
g(-1) = a - b + c - d ⋮ 7
=> \(\left\{{}\begin{matrix}\left(a+b+c+d\right)+\left(a-b+c-d\right)⋮7\\\left(a+b+c+d\right)-\left(a-b+c-d\right)⋮7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2\left(a+c\right)⋮7\\2\left(b+d\right)⋮7\end{matrix}\right.\)
Mà 2 không chia hết cho 7 => \(\left\{{}\begin{matrix}a+c⋮7\\b+d⋮7\end{matrix}\right.\) (1)
g(2) = 16a + 8b + 4c + 2d ⋮ 7
g(-2) = 16a - 8b + 4c - 2d ⋮ 7
=> \(\left\{{}\begin{matrix}\left(16a+8b+4c+2d\right)+\left(16a-8b+4c-2d\right)⋮7\\\left(16a+8b+4c+2d\right)-\left(16a-8b+4c-2d\right)⋮7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}8\left(4a+c\right)⋮7\\4\left(4b+d\right)⋮7\end{matrix}\right.\)
Mà 8 và 4 không chia hết cho 7
=> \(\left\{{}\begin{matrix}4a+c⋮7\\4b+d⋮7\end{matrix}\right.\) (2)
Từ (1) và (2)
=> \(\left\{{}\begin{matrix}\left(4a+c\right)-\left(a+c\right)⋮7\\\left(4b+d\right)-\left(b+d\right)⋮7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3a⋮7\\3b⋮7\end{matrix}\right.\)
Mà 3 không chia hết cho 7 => \(\left\{{}\begin{matrix}a⋮7\\b⋮7\end{matrix}\right.\)
Lại có: \(\left\{{}\begin{matrix}a+c⋮7\\b+d⋮7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}c⋮7\\d⋮7\end{matrix}\right.\)
Vậy bài toán đã được chứng minh
Đề là chia hết cho 5 nha
Do \(f\left(x\right)⋮5\) với \(\forall x\in Z\)
\(\Rightarrow f\left(0\right)⋮5;\forall x\in Z\)
\(\Rightarrow a\cdot0+b\cdot0+c\cdot0+d⋮5\)
\(\Rightarrow d⋮5\)
\(\Rightarrow ax^3+bx^2+cx⋮5\)
\(f\left(1\right)=a+b+c⋮3;f\left(-1\right)=-a+b-c⋮5\)
\(\Rightarrow f\left(1\right)+f\left(-1\right)=2b⋮3\Rightarrow b⋮5\)
\(\Rightarrow a+c⋮5\)
\(P\left(2\right)=8a+4b+2c+d=6a+2\left(a+c\right)+4b+d⋮5\)
\(\Rightarrow6a⋮5\)
\(\Rightarrow a⋮5\Rightarrow c⋮5\)
\(\Rightarrow a;b;c;d⋮5\)
a, cho f(x) = \(3^2\)-12X = 0
=> X=\(\frac{3^2-0}{12}=\frac{9}{12}=\frac{3}{4}\). Vậy X=\(\frac{3}{4}\)là nghiệm của đa thức.
b, đề chưa rõ k mình cái nha =)
a, f(x)=\(3^2\) -12x=0
=>9=12x
=>x=\(\frac{3}{4}\)
b,f(1)=a+b=-2 (1)
f(2)=2a+b=0 (2)
Từ (1) và (2)
=>f(2)-f(1)=2a+b-(a+b)=a=2=0-(-2)=2
a=2
=>a+b=0
=>b=-4
giả sử \(x^4+ax+b=\left(x^2-4\right)\left(x^2+mx+n\right)\)
\(=x^4+mx^3+nx^2-4x^2-4mx-4n\)
\(=x^4+mx^3+\left(n-4\right)x^2-4mx-4n\)
Đồng nhất hệ số hai vế suy ra m = 0; n = 4; -4m = a; -4n = b
Suy ra a = 0;b=-16
Vậy \(x^4+ax+b=x^4-16\)
Đặt f(x)=\(\left(x^2+ax+b\right)\left(x^2+mx+n\right)\)
\(\Leftrightarrow\hept{\begin{cases}a=\sqrt{2}\\b=1\end{cases}}\)hoặc \(\hept{\begin{cases}a=-\sqrt{2}\\b=1\end{cases}}\)