K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 :

    \(a+b=3.\left(a-b\right)=\)\(2\frac{a}{b}\)

\(\Rightarrow a+b=3.\left(a-b\right)\)

\(\Rightarrow a+b=3a-3b\)

\(\Rightarrow3a-3b-a-b=0\)

\(\Rightarrow2a-4b=0\)

\(\Rightarrow2.\left(a-2b\right)=0\)

\(\Rightarrow\hept{\begin{cases}a-2b=0\\a=2b\end{cases}}\)

Ta có : \(a+b=\frac{2a}{b}\)

Thay \(a=2b\) vào 

\(\Rightarrow2b+b=\frac{2.23}{b}\)

\(\Rightarrow3b=\frac{4b}{b}\Rightarrow3b=4\)

\(\Rightarrow b=\frac{4}{3}\Rightarrow a=2.\frac{4}{3}=\frac{8}{3}\)

Vậy \(a=\frac{8}{3}\) và \(b=\frac{4}{3}\)

Chúc bạn học tốt ( -_- )

Bài 2 :

\(B=50+\frac{50}{3}+\frac{25}{3}+\frac{20}{4}+\frac{10}{5}+\frac{100}{6.7}+...+\)\(\frac{100}{98.99}+\frac{1}{99}\)

\(B=\frac{100}{2}+\frac{100}{6}+\frac{100}{12}+\frac{100}{20}+\frac{100}{30}+\frac{100}{6.7}+...+\frac{100}{98.99}+\frac{100}{9900}\)

\(B=\frac{100}{1.2}+\frac{100}{2.3}+\frac{100}{3.4}+\frac{100}{4.5}+\frac{100}{5.6}+\frac{100}{6.7}+...+\frac{100}{98.99}+\frac{100}{99.100}\)

\(B=100.\frac{100}{2}+\frac{100}{2}-\frac{1}{3}+\frac{100}{3}-\frac{100}{4}+\frac{100}{4}-\frac{100}{5}+\frac{100}{5}-\frac{100}{6}+\frac{100}{6}\)\(-\frac{100}{7}+...+\frac{100}{98}+\frac{100}{99}+\frac{100}{99}-1\)

\(B=100-1\)

\(B=99\)

Chúc bạn học tốt ( -_- )

23 tháng 6 2018

bài này mà lớp 7 mà ko làm đc nên học lại lớp 6 cho vừa

23 tháng 6 2018

em học trước toán lớp 7

19 tháng 10 2017

Theo đề bài ta có:

\(\left\{{}\begin{matrix}3a=5b\\\dfrac{b}{5}=\dfrac{c}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{5}=\dfrac{b}{3}\\\dfrac{b}{5}=\dfrac{c}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{25}=\dfrac{b}{15}\\\dfrac{b}{15}=\dfrac{c}{12}\end{matrix}\right.\Leftrightarrow\dfrac{a}{25}=\dfrac{b}{15}=\dfrac{c}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{25}=\dfrac{b}{15}=\dfrac{c}{12}=\dfrac{a-b+c}{25-15+12}=\dfrac{34}{22}=\dfrac{17}{11}\)

Tính tiếp

7 tháng 10 2014

Tổng 3 số 38, 45 và 67 là:

    38 + 45 + 67 = 150

A lớn hơn trung bình cộng của cả 4 số => Ta có sơ đồ sau:

Tổng 3 số: 150 A Trung bình cộng 9 3 lần Trung bình cộng = 150 + 9

=> 3 lần Trung bình cộng = 150 + 9 = 159

=> Trung bình cộng = 159 : 3 = 53

=> A = Trung bình cộng + 9 = 53 + 9 = 62

25 tháng 11 2014

giỏi wá'''''''''''!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

12 tháng 10 2017

1)

a)\(0,\left(32\right)+0,\left(67\right)\)

\(=0,\left(01\right).32+0,\left(01\right).67\)

\(=0,\left(01\right).\left(32+67\right)\)

\(=\frac{1}{99}.99\)

\(=1\left(đpcm\right)\)

b)\(0,\left(33\right).3\)

\(=0,\left(01\right).33.3\)

\(=\frac{1}{99}.33.3\)

\(=\frac{33}{99}.3\)

\(=\frac{99}{99}\)

\(=1\left(đpcm\right)\)

2)\(0,\left(12\right):1,\left(6\right)=x:0,\left(3\right)\)

\(\left[\left(0,01\right).12\right]:\left[1+0,\left(6\right)\right]=x:\left[0,\left(1\right).3\right]\)

\(\left(\frac{1}{99}.12\right):\left[1+0,\left(1\right).6\right]=x:\left(\frac{1}{9}.3\right)\)

\(\frac{4}{33}:\left[1+\frac{1}{9}.6\right]=x:\frac{1}{3}\)

\(\frac{4}{33}:\left[1+\frac{2}{3}\right]=x.3\)

\(3x=\frac{4}{33}:\frac{5}{3}\)

\(3x=\frac{4}{33}\cdot\frac{3}{5}\)

\(3x=\frac{4}{55}\)

\(x=\frac{4}{55}:3\)

\(x=\frac{4}{55}\cdot\frac{1}{3}\)

\(x=\frac{4}{165}\)

10 tháng 8 2019

a) |x + 13| = 25

x + 13 = 25; -25

x + 13 = 25 hoặc x + 13 = -25

x = 25 - 13          x = -25 - 13

x = 12                 x = -38

=> x = 12 hoặc x = -38

b) |x - 17| + 13 = 15

|x - 17| = 15 - 13

|x - 17| = 2

x - 17 = 2; -2

x - 17 = 2 hoặc x - 17 = -2

x = 2 + 17         x = -2 + 17

x = 19               x = 15

=> x=  19 hoặc x = 15

c) 26 - |x + 9| = -13

|x + 9| = -13 - 26

|x + 9| = -39

x + 9 = 39; -39

x + 9 = 39 hoặc x + 9 = -39

x = 39 - 9          x = -39 - 9

x = 30               x = -48

=> x = 30 hoặc x = -48

Họ và tên thí sinh:…………………………………………………………………Số báo danh:………..…… Phòng thi số:……………Bài 1: (4,5 điểm)a) Trong ba số a, b, c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết:\(|a|=b^2\left(b-c\right)\) . Hỏi số nào dương, số nào âm, số nào bằng 0 ?b) Tìm hai số x và y sao cho \(x+y=xy=x:y\left(y\ne0\right)\)c) Cho p là số nguyên tố. Tìm tất cả...
Đọc tiếp

Họ và tên thí sinh:…………………………………………………………………Số báo danh:………..…… Phòng thi số:……………

Bài 1: (4,5 điểm)
a) Trong ba số a, b, c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết:
\(|a|=b^2\left(b-c\right)\) . Hỏi số nào dương, số nào âm, số nào bằng 0 ?
b) Tìm hai số x và y sao cho \(x+y=xy=x:y\left(y\ne0\right)\)

c) Cho p là số nguyên tố. Tìm tất cả các số nguyên a thỏa mãn: \(a^2+a-p=0\)
Bài 2: (4,5 điểm)

a) Cho đa thức \(F\left(x\right)=ã^3+bx^3+2014x+1\),biết \(F\left(2015\right)=2\)Hãy tính \(F\left(-2015\right)\)

b) Tìm x, biết: \(\left(x-5\right)^{x+1}-\left(x-5\right)^{x+13}=0\)

c, Không dùng máy tính, hãy tính giá trị của biểu thức:

\(S=\frac{\frac{3}{13}-0,6+\frac{3}{7}+0,75}{\frac{11}{7}-2,2+\frac{11}{13}+2,75}\)

Bài 3: (4.0 điểm)

a) Tìm giá trị nhỏ nhất của biểu thức:

\(A=|x-2|+|2x-3|+|3x-4|\)

b) Tìm hai số khác 0 biết tổng, hiệu, tích của hai số đó tỉ lệ với \(3;\frac{1}{3};\frac{200}{3}\)

Bài 4: (4.0 điểm)
Cho tam giác ABC vuông ở A có AB = 6cm, AC = 8cm và đường cao AH. Tia phân
giác của góc BAH cắt BH tại D. Trên tia CA lấy điểm K sao cho CK = BC.
a) Chứng minh: KB // AD.
b) Chứng minh: \(KD\perp BC.\)
c) Tính độ dài KB.

Bài 5: (3.0 điểm)
Cho tam giác ABC có góc A tù. Kẽ\(AD\perp AB\)  và AD = AB (tia AD nằm giữa hai tiaAB và AC). Kẽ \(AE\perp AC\) và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M làtrung điểm của BC. Chứng minh rằng: \(AM\perp DE\)

11
11 tháng 6 2019

#)Giải :

Câu 1 :

a) 

- Nếu a = 0 => b = 0 hoặc b - c = 0 => b = c hoặc b = c ( đều vô lí ) => a khác 0

- Nếu b = 0 => a = 0 ( vô lí ) => b khác 0

=> c = 0

=> |a| = b2.b = b3

=> b3 ≥ 0 

=> b là số nguyên dương 

=> a là số nguyên âm

Vậy a là số nguyên dương, b là số nguyên âm và c = 0

11 tháng 6 2019

#)Giải :

Câu 1 :

b) x.y = x : y 

=> y= x : x = 1

=> y = -1 hoặc 1 

+) y = 1 => x + 1 = x ( vô lí )

+) y = -1 => x - 1 = -x

=> x = 1/2

Vậy y = -1 ; x = 1/2