K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

Đặt a=12n

      b=12m

     UCLN(a;b)=12

Ta có:

        12m+12n=120

        12.(m+n)=120

              m+n =120:12

             m+n=10

Vì giá trị của m và n như nhau nên ta giả sử m>n

ta có bảng sau

m    7   3   9   1                          a   84   36   108   12

n    3   7   1   9                           b   36   84   12   108

Vậy các số a,b cần tìm là:

 (108;12);(84;36);(36;84);(12;108)

19 tháng 12 2023

Do ƯCLN(a,b) = 12

=> a = 12 × a'; b = 12 × b' (a';b')=1

Ta có:

a + b = 120

12 × a' + 12 × b' = 120

12 × (a' + b') = 120

a' + b' = 120 : 12

a' + b' = 10

Giả sử a > b => a' > b' mà (a';b')=1 => a' = 9; b' = 1 hoặc a' = 7; b' = 3

+ Với a' = 9; b' = 1 => a = 108; b = 12

+ Với a' = 7; b' = 3 => a = 84; b = 36

Vậy các cặp giá trị a,b thỏa mãn là: (108;12) ; (84;36) ; (36;84) ; (12;108)

ƯCLN(a,b)=34=>a chia hết cho 34;b chia hết cho 34

ta có a=m.34;b=n.34(m,n là số tư nhiên)

=>a.b=34.m.34.n=6936 

            m.n.1156 =6936

            m.n          =6936:1156

            m.n           =6=1.6=6.1=2.3=3.2

vậy:(m,n):(1;6),(6;1),(2;3),(3;2)

do 72= 322.233

nếu ít nhất trong 2 số a , b có 1 số chia hết cho 2 

giả sử a chia hết cho 2 =>b=42-a cũng chia hết cho 2

=> cả a và b đều chia hết cho 2

vì vậy tương tự ta cũng có a,b chi hết cho 3

=>a và b chia hết cho 6

ta thấy 42=36+6=30+12=18+24(là tổng 2 số chia hết cho 6)

trong các số trên chỉ có số 18 và 24 thỏa mãn

=>a=18;b=24

23 tháng 11 2016

Bài 1:

Gọi UCLN(24n+7;18n+5)=d

Ta có:

[3(24n+7)]-[4(18n+5)] chia hết d

=>[72n+21]-[72n+20] chia hết d

=>1 chia hết d => d=1

=>UCLN(24n+7;18n+5)=1

b)Gọi UCLN(18n+2;30n+3)=d

Ta có:

[5(18n+2)]-[3(30n+3)] chia hết d

=>[90n+10]-[90n+9] chia hết d

=>1 chia hết d => d=1

=>UCLN(18n+2;30n+3)=1

 

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:

$ab=ƯCLN(a,b).BCNN(a,b)$

$\Rightarrow 6936=ƯCLN(a,b).204$

$\Rightarrow ƯCLN(a,b)=34$.

Đặt $a=34x, b=34y$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.

Ta có:

$BCNN(a,b)=34xy=204$

$\Rightarrow xy=6$.

Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,6), (2,3), (3,2), (6,1)$

$\Rightarrow (a,b)=(34,204), (68,102), (102,68), (204,34)$

13 tháng 11 2016

Hai số đó là 68 và 102

13 tháng 11 2016

ban tra loi cu the dii

mink k cho