K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

Ta có: 

\(a^2+b^2+4=2ab+4a+4b\)

\(\Rightarrow a^2+b^2+4-2ab-4b+4a=8a\)

\(\Rightarrow\left(a-b+2\right)^2=8a\)

\(\Rightarrow\frac{a}{2}=\frac{\left(a-b+2\right)^2}{16}=\left(\frac{a-b+2}{4}\right)^2\)

=> \(\frac{a}{2}\)là số chính phương.

6 tháng 10 2019

Sao lại bằng 8a chỗ đấy ạ. Bạn giải thích hộ mình với

8 tháng 11 2018

mk viết thiếu xin lỗi nha

a,\(\sqrt{ab},\sqrt{cd}\)là hai số nguyên tố

b, \(\sqrt{ab}+c=b^2+d\)

8 tháng 11 2018

bạn nào trả lời được mk cho 6 tích

các bạn giúp mk nha

........................

16 tháng 4 2019

Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)

từ (gt) db¯+c=b^2+ d (2)

=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9

+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)

+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7

Thay vào (2) ta đc c = 9

Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9 

=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn

30 tháng 1 2024

Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)

từ (gt) db¯+c=b^2+ d (2)

=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9

+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)

+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7

Thay vào (2) ta đc c = 9

Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9 

=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn