K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

\(a=\orbr{\begin{cases}-2\\7\end{cases}}\)\(\Rightarrow b=\orbr{\begin{cases}7\\-2\end{cases}}\)

10 tháng 1 2024

Theo đề S là tổng của a,b và P là tích của a,b 

Ta có: \(\left\{{}\begin{matrix}a+b=S=5\\ab=P=-14\end{matrix}\right.\) 

Theo hệ thức Vi-et thì a,b là nghiệm của phương trình:

\(X^2-SX+P=0\)

\(\Leftrightarrow X^2-5X-14=0\)

\(\Delta=\left(-5\right)^2-4\cdot1\cdot-14=81>0\)

\(\Leftrightarrow\left[{}\begin{matrix}X_1=\dfrac{-5+\sqrt{81}}{2}=2\\X_2=\dfrac{-5-\sqrt{81}}{2}=-7\end{matrix}\right.\)

Vậy: \(\left(a;b\right)=\left\{\left(2;-7\right);\left(-7;2\right)\right\}\)

S=5; P=-14

=>\(\left\{{}\begin{matrix}a+b=5\\a\cdot b=-14\end{matrix}\right.\)

=>a,b là các nghiệm của phương trình: \(x^2-5x-14=0\)

=>(x-7)(x+2)=0

=>\(\left[{}\begin{matrix}x-7=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\)

Vậy: a=7; b=-2

Ta có : 2 . ( a + b ) = ab

=>       2 . a + 2 . b = 10 . a + b

=>      10 . a - 2 . a = 2 . b - b

=>      8 . a             = b

Vì a , b\(\in\)N ;  a , b là chữ số và a\(\ne\)0

+) Nếu a = 1 => b = 8 . a = 8 . 1 = 8 

                     => ab = 18 

Mà ab - 14 = 18 - 14 = 4 = 22 hoặc ( - 2 )2  => ab = 18 ( chọn )

+) Nếu a = 2 => b = 8 . a = 8 . 2 = 16 ( loại vì b là chữ số )

Vậy ab = 18

                        Mk chỉ bt lm` nz thôy ! Sai thì bỏ qa nha =))

                                           Goodluck ...

26 tháng 2 2020

Ngu si

9 tháng 9 2017

A=\(\frac{4}{2ab}+\frac{3}{a^2+b^2}+14\)

    =\(\frac{1}{2ab}+3\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)+14\)

     Áp dụng BĐT AM-GM cho 2 số không âm có:

\(a+b\ge2\sqrt{ab}\)\(\Leftrightarrow\)\(2\sqrt{ab}\le1\Leftrightarrow ab\le\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{2ab}\ge2\)(1)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)ta có:\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{4}{\left(a+b\right)^2}=4\)(2)

Từ (1) và (2) =>A\(\ge\)2+3.4+14=28

Dấu "=" xảy ra\(\Leftrightarrow\)a=b=\(\frac{1}{2}\)

9 tháng 9 2017

A=\(\frac{2}{ab}+\frac{3}{a^2+b^2}+14=\frac{1}{2ab}+\frac{3}{2ab}+\frac{3}{a^2+b^2}+14=\frac{1}{2ab}+3\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)\)+14

Áp dụng bđt Cauchy Schawrz dạng Engel: \(\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{\left(1+1\right)^2}{2ab+a^2+b^2}=\frac{2^2}{\left(a+b\right)^2}=\frac{4}{1^2}=4\)(1)

Mặt khác áp dụng bđt Cô-si: \(a^2+b^2\ge2ab\Leftrightarrow a^2+b^2+2ab\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow1^2\ge4ab\Leftrightarrow2ab\le\frac{1}{2}\Leftrightarrow\frac{1}{2ab}\ge2\)(2)

Từ (1) và (2) suy ra \(A=\frac{1}{2ab}+3\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)+14\ge2+3.4+14=28\)

Dấu "=" xảy ra khi a=b=1/2

b: =>a=5-b

\(\Leftrightarrow\left(5-b\right)^2+b^2=13\)

\(\Leftrightarrow2b^2-10b+25-13=0\)

\(\Leftrightarrow\left(b-2\right)\left(b-3\right)=0\)

hay \(b\in\left\{2;3\right\}\)

\(\Leftrightarrow a\in\left\{3;2\right\}\)

4 tháng 1 2022

b: =>a=5-b

⇔(5−b)2+b2=13⇔(5−b)2+b2=13

⇔2b2−10b+25−13=0⇔2b2−10b+25−13=0

⇔(b−2)(b−3)=0⇔(b−2)(b−3)=0

hay b∈{2;3}b∈{2;3}

⇔a∈{3;2}⇔a∈{3;2}

 

9 tháng 7 2019

\(a+b=14\Rightarrow a^2+b^2+2ab=196\Rightarrow a^2+b^2=198???\)

Bạn xem lại đề

11 tháng 7 2019

????????? bạn sai kìa

11 tháng 2 2018

a=9876543; b=12345

Hoặc a=12345; b=9876543