K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2016

a, A > 0 <=> \(\begin{cases}a+7>0\\5-a>0\end{cases}\)  =>\(\begin{cases}a>-7\\a< 5\end{cases}\)   (TM)

             hoặc\(\begin{cases}a+7< 0\\5-a< 0\end{cases}\)  =>\(\begin{cases}a< -7\\a>5\end{cases}\)  (loại)

Vậy -7 < a < 5 thì A > 0

b, B < 0 <=> \(\begin{cases}4-a< 0\\a-2>0\end{cases}\)   =>  \(\begin{cases}a>4\\a>2\end{cases}\)  => a > 4

             hoặc \(\begin{cases}4-a>0\\a-2< 0\end{cases}\)  => \(\begin{cases}a< 4\\a< 2\end{cases}\)   => a < 2

Vậy a > 4 hoặc a < 2 thì B < 0

2 tháng 6 2016

a.

\(\frac{a+7}{5-a}>0\)

=> a + 7 và 5 - a cùng dấu.

  • \(\begin{cases}a+7< 0\\5-a< 0\end{cases}\)\(\Leftrightarrow\begin{cases}a< -7\\a>5\end{cases}\)\(\Rightarrow\) loại
  • \(\begin{cases}a+7>0\\5-a>0\end{cases}\)\(\Leftrightarrow\begin{cases}a>-7\\a< 5\end{cases}\)\(\Leftrightarrow-7< a< 5\)

Vậy \(x\in\left\{-6;-5;-4;-3;-2;-1;0;1;2;3;4\right\}\)

Chúc bạn học tốtok

10 tháng 2 2020

Biến đổi tương đương:

\(\Leftrightarrow a^6+a^5b+ab^5+b^6\ge a^6+a^4b^2+a^2b^4+b^6\)

\(\Leftrightarrow a^5b-a^4b^2-a^2b^4+ab^5\ge0\)

\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

NV
29 tháng 2 2020

1.

\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)

\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)

Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá

2.

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

Đặt \(x+y+z=t\Rightarrow0< t\le1\)

\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
29 tháng 2 2020

3.

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)

Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)

Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)

4.

ĐKXĐ: \(-2\le x\le2\)

\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)

\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)

Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)

\(y_{min}=-2\) khi \(x=-2\)

29 tháng 6 2016

ta có : P=\(-\frac{3}{4}.\frac{5}{7}.x.\left(-\frac{9}{11}\right).\left(-\frac{3}{13}\right)=-\frac{405}{4004}.x\)

a) khi P>0=> x<0 => x mang đấu âm

b) P=0=> x=0=> x k âm cũng không dương

c) P<0=> x>0=> x mang dấu dương

29 tháng 6 2016

a) P>0 thì x là số âm (-)

b) P=0 thì x =0 ( không thuộc số dương và số âm nên không có dấu)
c) P<0 thì x là số dương (+)

13 tháng 2 2020

Mấy cái dấu "=" anh tự xét.

Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)

a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)

b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)

12 tháng 2 2020

~Mong mn giúp!!!vui

7 tháng 9 2016

Bài 1:

a) Để x là số âm <=>x<0

<=> \(\frac{a-4}{7}< 0\Leftrightarrow a-4< 0\Leftrightarrow a< 4\)

b) Để x là số dương <=> x>0

<=> \(\frac{a-4}{7}>0\Leftrightarrow a-4>0\Leftrightarrow a>4\)

c) x k phải là số âm k phải là số dương <=>x=0

<=> \(\frac{a-4}{7}=0\Leftrightarrow a-4=0\Leftrightarrow a=4\)

 

 

8 tháng 9 2016

mk thanks bn nhìu lắm nha @@ok