Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
Ta có: \(\frac{2a+8}{5}-\frac{a}{5}\inℤ\)(với a \(\inℤ\))
=> \(\frac{2a+8}{5}-\frac{a}{5}=\frac{2a+8-a}{5}\)
\(=\frac{2a-a+8}{5}\)
\(=\frac{a+8}{5}\)
Vì \(\frac{a+8}{5}\)\(\inℤ\)mà 8 chia 5 dư 3
=> a chia 5 dư 2
=> a = 5k + 2 (với k \(\inℤ\))
\(\frac{2a+5}{5}-\frac{a}{5}=\frac{2a+5-a}{5}=\frac{a+5}{5}=\frac{a}{5}+1\)
Mà 1 là số nguyên nên để \(\frac{2a+5}{5}-\frac{a}{5}\)nguyên thì \(a⋮5\)\(\Rightarrow a\in\left\{...;-10;-5;0;5;10;....\right\}\)
\(\frac{2a+5}{5}-\frac{a}{5}=\frac{2a+5-a}{5}=\frac{a+5}{5}=\frac{a}{5}+1\)
Để số đó nguyên thì phải chia hết cho 5 thôi
=> a là bội của 5 <=> có vô số nghiệm
câu a)
\(\frac{2a+8}{5}-\frac{a}{5}=\frac{2a+8-a}{5}=\frac{a+8}{5}\)
Để \(\frac{a+8}{5}\in Z\)thì \(a+8\)phải là bội của 5
Suy ra \(a+8\in\left\{\pm1;\pm5\right\}\)
Suy ra \(a\in\left\{-7;-9;-3;-13\right\}\)
Hết
Câu 2 tương tự nha
\(A=\dfrac{2a+8-5}{5}=\dfrac{2a+3}{5}\)
Để A là số nguyên thì 2a+3=5k
=>2a=5k-3
=>a=(5k-3)/2
\(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9-5a-17-3a}{a+3}=\frac{-6a-8}{a+3}=\frac{-6a-18+10}{a+3}=\frac{-6\left(a+3\right)+10}{a+3}\)
\(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên
<=> a + 3 thuộc Ư(10) = {-10 ; -5 ; -2 ; -1 ; 1 ; 2 ; 5 ; 10}
<=> a thuộc {-13 ; -8 ; -5 ; -4 ; -2 ; -1 ; 2 ; 7}
Câu hỏi của Lê Nguyễn Minh Hằng - Toán lớp 7 | Học trực ... - Hoc24
a)\(\frac{2a+8}{5}-\frac{a}{5}=\frac{a+8}{5}\)
Để \(\frac{2a+8}{5}-\frac{a}{5}\in Z\) thì: \(a+8\in B\left(5\right)\)
b)\(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9-5a-17-3a}{a+3}=\frac{-6a-8}{a+3}\)
\(=\frac{-6a-18}{a+3}+\frac{10}{a+3}=\frac{-6.\left(a+3\right)}{a+3}+\frac{10}{a+3}=-6+\frac{10}{a+3}\)
Để: \(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\in Z\) thì:
\(a+3\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
=>a = -2;-4;-1;-5;2;-8;7;-13
Ta có: \(\frac{2a+5}{5}-\frac{a}{5}=\frac{2a+5-a}{5}=\frac{a+5}{5}=\frac{a}{5}+1\) => a \(⋮\) 5 => a \(\in\) B(5)
Vậy để \(\frac{2a+5}{5}-\frac{a}{5}\) nguyên thì a \(\in\) B(5)