Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cần chứng minh \(a^4\ge4b\left(a-b\right)\Leftrightarrow\left(a-2b\right)^2\ge0\) (đúng)
\(a^2\ge4b\left(a-b\right)\Leftrightarrow3a^2\ge12b\left(a-b\right)\left(1\right)\)
Ta chứng minh \(2a^3-3a^2+1\ge0\)
\(\Leftrightarrow2a^3-2a^2-a^2+1\ge0\)
\(\Leftrightarrow2a^2\left(a-1\right)-\left(a-1\right)\left(a+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2-a-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a-1\right)\left(2a+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)\ge0\left(a>0\right)\left(2\right)\)
Vì \(3a^2\ge12b\left(a-b\right)\) theo \(\left(1\right)\)
\(\Rightarrow2a^3-12b\left(a-b\right)+1\ge2a^3-3a^2+1\ge0\) (theo \(\left(2\right)\))
Ta có 1/4(a+b)=a^2+b^2-ab>=(a+b)^2-3((a+b)^2/4)=(a+b)^2/4
=>0=<a+b=<1
Mặt khác A=<20(a+b)(a^2+b^2-ab)-6((a+b)^2/2)+2013
=>A=<20(a+b)((a+b)/4)-3(a+b)^2+2013=2(a+b)^2+2013=<2015
=>Amin=2015 khi a=b=1/2
C1
Giả sử căn 7 là số hữu tỉ Vậy căn 7 bằng a/b. Suy ra 7 bằng a bình / b bình. Suy ra a bình bằng 7b bình Suy ra a chia hết cho 7 Gọi a bằng 7k suy ra a bình bằng 7b bình Suy ra (2k) bình bằng 2b bình suy ra 4k bình bằng 2b bình suy ra 2k bình bằng b bình Suy ra ƯCLN(a,b)=2 Trái với đề bài =>căn 7 là số vô tỉ
\(\Leftrightarrow4a^2+12ab+9b^2=10b^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2a+3b=b\sqrt{10}\\2a+3b=-b\sqrt{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{b\sqrt{10}-3b}{2}\\a=\dfrac{-b\sqrt{10}-3b}{2}\end{matrix}\right.\)