K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo đề, ta có:

a-1 thuộc B(7) và a-4 thuộc B(9) và a-6 thuộc B(11)

mà a nhỏ nhất

nên a=589

11 tháng 3 2018

Theo tớ thì số cần tìm chia 5 dư 4 nên có tận cùng là 4 hoặc 9! mà số lại chia 2 dư 1 nên là số lẻ --> có tận cùng là 9. 
gọi số cần tìm là a9 đi bạn. thì 
a9 chia 3 dư 2 nên a chia 3 dư 2 (do a+9 chia 3 sẽ dư 2 mà 9 chia hết cho 3) 
như thế a có thể bằng 2,5,8,11.... 
thử dần vào nà: 29 chia 4 dư 1 bị loại rồi 
59 chia 4 dư 3 ( 56 : 4 = 16) --> ok 
59 chia 6 dư 5 ( 54 chia 6 được 9 mà)-->được rồi nè! 
chúc bạn may mắn!

23 tháng 7 2018

\(B1\)

\(\frac{3}{4}^{-2}=\frac{16}{9}\)

B 3

\(A=2^{13}\times3^{19}\)

2 tháng 11 2016

\(\Delta ABC\) có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

Theo để bài  \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{ B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15^o\)

hay: \(\frac{\widehat{A}}{3}=15^o\Rightarrow\widehat{A}=15^o.3=45^o\)

       \(\frac{\widehat{B}}{4}=15^o\Rightarrow\widehat{B}=15^o.4=60^o\)

       \(\frac{\widehat{C}}{5}=15^o\Rightarrow\widehat{C}=15^o.5=75^o\)

Vậy ...........................