Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}\right)^2-2\sqrt{ab}+\left(\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng
Dấu \("="\) xảy ra khi a = b.
Cauchy-shwarz:
\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\ge\dfrac{\left(x+y\right)^2}{a+b}\)
\(\Leftrightarrow bx^2\left(a+b\right)+ay^2\left(a+b\right)\ge\left(x+y\right)^2ab\)
\(\Leftrightarrow\left(abx^2-abx^2\right)+\left(aby^2-aby^2\right)+\left(bx\right)^2-2bxay+\left(ay\right)^2\ge0\)
\(\Leftrightarrow\left(bx-ay\right)^2\ge0\) luôn đúng
Dấu \("="\) xảy ra khi \(bx=ay\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\)
A=(2x-3)2+4/9
MinA đạt được khi và chỉ khi (2x-3)2+4/9=4/9
<=> (2x-3)2=0
<=> x=1,5
Vậy MinA=4/9 đạt được khi x=1,5
b, Ta có:
|2x-3/4||\(\ge\)0
=> |2x-3/4|-1/2 \(\ge\) -1/2
MinA=-1/2 đạt được khi và chỉ khi
|2x-3/4|=0
<=>x=3/8
Vậy MinA=-1/2 đạt được khi x=3/8
òi mấy câu còn lại chú cứ làm tương tự không hiểu ib hỏi anh
A= căn x-3+4/ căn x-3
A=1+4 / căn x-3
để A thuộc Z thì 4 chia hết cho x-3
hay x-3 là ước của 4
x-3 thuộc (1;-1;2;-2;4;-4)
x thuộc (4;2;5;1;7;-1)
vậy ....
Bài 1:
\(A=\left|x-500\right|+\left|x-300\right|=\left|x-500\right|+\left|300-x\right|\)
\(\ge\left|x-500+300-x\right|=200\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-500\right).\left(300-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-500\ge0\\300-x\ge0\end{cases}}\) hoặc \(\hept{\begin{cases}x-500\le0\\300-x\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge500\\x\le300\end{cases}}\) hoặc \(\Leftrightarrow\hept{\begin{cases}x\le500\\x\ge300\end{cases}}\) (vô lí)
Nên \(300\le x\le500\)
Vậy Amin = 200 khi và chỉ khi \(300\le x\le500\)
a, 3x2 - 6x > 0
=> 3x2 > 6x ( Với mọi x )
=> 3xx > 6x
=> 3x > 6 => x > 3
Vậy x > 3 là thỏa mãn yêu cầu
b, ( 2x - 3 ).( 2 - 5x ) \(\le\)0
=> 2x - 3 \(\le\)0 Hoặc 2 - 5x \(\le\)0
Trường hợp 1: 2x - 3 \(\le\)0
=> 2x \(\le\)3
=> x \(\le\)\(\frac{3}{2}\)( 1 )
Trường hợp 2: 2 - 5x \(\le\)0
=> 2 \(\le\)5x
=> x \(\le\frac{2}{5}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra:
x \(\le\frac{3}{2}\)Hoặc x\(\le\frac{2}{5}\)là thỏa mãn
Mà \(\frac{2}{5}< \frac{3}{2}\)suy ra x\(\le\)\(\frac{3}{2}\)Là thỏa mãn yêu cầu
Vậy ....
c, x2 - 4 \(\ge\)0
=> x2 \(\ge\)4
=> x2 \(\ge\)22
=> x \(\ge\)2
Vậy x\(\ge\)2 là thỏa mãn yêu cầu
~Haruko~