Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ đối xứng loại 2
Trừ 2 phương trình cho nhau
=> (x+1)^2-(y+1)^2=y-x
<=> (x-y)(x+y+2)+(x-y)=0
<=> (x-y) (x+y+3)=0
<=> x-y =0 hoặc x+y+3=0
Thế vào một trong 2 phương trình
Có 2 trường hợp em phải xét nếu x-y =0 thế vào có 1 nghiệm duy nhất thì phương trình x+y+3 =0 vô nghiệm
Ngược lại
\(x^3+3x^2+2x=0\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
\(\left(x+1\right)\left(x^2+2x+1+a\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+1=-a\end{matrix}\right.\)
Vì 2 pt đã có nghiệm chung là \(-1\Rightarrow\) nghiệm của pt \(\left(x+1\right)^2=-a\) phải khác \(0,2\)
\(\Rightarrow a\ne-1;-9\)
(cách mình là vậy chứ mình cũng ko chắc là có đúng ko nữa)
\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt[4]{x\left(1-x\right)}=m^3\)