K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2018

2x^3 - 3x^2 + x + a x + 2 2x^3 - 3x^2 2x^2 - 7x + 15 2x^2 + 4x^2 -7x^2 + x -7x^2 - 14x 15x + a 15x + 30

Để \(2x^3-3x^2+x+a⋮\left(x+2\right)\) thì:

\(15x+a=15x+30\)

\(\Leftrightarrow a=30\)

10 tháng 6 2018
 231a
a=-22-7150

vì phép chia trên là phép chia hết nên số dư cuối cùng bằng 0. Để dư bằng 0 thì a=30

(áp dụng lược đồ horner)

16 tháng 8 2017

a) gọi Q(x) là thương khi chia f(x) cho g(x)

khi đó ta có dạng: f(x)=g(x).Q(x)=> f(x)=(x+3)(Q(x)   (1)

Vì (1) luôn đúng vs mọi x nên thay x=-3 vào (1) ta đc:

f(-3)= \(\left(-3\right)^3+3.\left(-3\right)^2+5.\left(-3\right)+a=0\) 0

    <=> \(-15+a=0\)

<=>a=15

Vậy vs a=15 thì f(x) chia hết cho g(x)

26 tháng 11 2017

C1: Gọi đa thức thương là Q(x)

Vì x^4 : x^2 = x^2

=> đa thức có dạng x^2+mx+n

Đề x^4 - 3x^2 + ax+b chia hết x^2 - 3x + 2

=> x^4 - 3x^2 + ax + b = (x^2 - 3x + 2)(x^2 + mx + n)

x^4+ 0x^3 - 3x^2 +ax+b  = x^4 +mx^3 +(x^2)n -3x^3 -3mx^2 - 3xn + 2x^2 + 2mx + 2n

x^4 + 0x^3 -3x^2 + ax+b = x^4 + x^3(m-3) - x^2(3m - n -2) +x(2m - 3n) +2n

<=>| 0 = m-3                     <=> | m = 3

| 3=3m-n-2                                | b= 8

| a=2m-3n                                 | n = 4

| b = 2n                                     | a = -6

Vậy a= -6, b= 8

10 tháng 10 2016

Cách 1. Sử dụng định lí Bezout : 

Vì f(x) chia hết cho g(x) nên ta có thể biểu diễn thành : \(f\left(x\right)=g\left(x\right).g'\left(x\right)\) với g'(x) là đa thức thương

hay \(f\left(x\right)=\left(x-1\right)\left(x-2\right).g'\left(x\right)\)

Khi đó , theo định lí Bezout ta có \(\hept{\begin{cases}f\left(1\right)=a+b=0\\f\left(2\right)=7+4a+2b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a+b=0\\4a+2b=-7\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{7}{2}\\b=\frac{7}{2}\end{cases}}\)

Cách 2. Sử dụng HỆ SỐ BẤT ĐỊNH

Giả sử \(f\left(x\right)=x^3+ax^2+bx-1=\left(x^2-3x+2\right).\left(x+c\right)\)(Vì bậc cao nhất của f(x) là 3)

\(\Rightarrow x^3+ax^2+bx-1=x^3+x^2\left(c-3\right)+x\left(2-3c\right)+2c\)

Theo hệ số bất định thì \(\hept{\begin{cases}2c=-1\\2-3c=b\\c-3=a\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-\frac{1}{2}\\b=\frac{7}{2}\\a=-\frac{7}{2}\end{cases}}\)

10 tháng 10 2016

Lại lỗi dấu ngoặc nhọn =.="

21 tháng 6 2017

b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18

4x 2 -4x+1-4x 2+25=18

26-4x=18

4x=8

x=2

21 tháng 6 2017

a,27x-18=2x-3x^2

<=> 3x^2-2x+27-18x=0

<=> 3x^2-20x+27=0

\(\Delta\)= 20^2-4-12.27

tính \(\Delta\)rồi tìm x1 ,x2

26 tháng 8 2021

Trả lời:

a, \(\left(x^2-2y\right)\left(x^4+2x^2y+4y^2\right)-x^3\left(x-y\right)\left(x^2+xy+y^2\right)+8y^3\)

\(=\left(x^2\right)^3-\left(2y\right)^3-x^3\left(x^3-y^3\right)+8y^3\)

\(=x^6-8y^3-x^6+x^3y^3+8y^3\)

\(=x^3y^3\)

b, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)

\(=x^3-8-\left(x^3-3x^2+3x-1\right)+7\)

\(=x^3-8-x^3+3x^2-3x+1+7\)

\(=3x^2-3x\)

c, \(x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)

\(=x\left(4-x^2\right)+x^3+27\)

\(=4x-x^3+x^3+27\)

\(=4x+27\)

5 tháng 11 2024

\(^{ }\)

22 tháng 7 2018

Nhân ra thôi chứ sao?

22 tháng 7 2018

thì bạn nhân đi !

22 tháng 7 2017

\(x^2-5x+6=\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)

22 tháng 7 2017

1, <=>x^2-x-2 = x^2-4

<=>x^2-4-x^2+x+2 = 0

<=> x-2 = 0

<=> x=2

2, <=> (x-2).(x-3)=0

<=> x-2 = 0 hoặc x-3 = 0

<=> x=2 hoặc x=3