Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) gọi Q(x) là thương khi chia f(x) cho g(x)
khi đó ta có dạng: f(x)=g(x).Q(x)=> f(x)=(x+3)(Q(x) (1)
Vì (1) luôn đúng vs mọi x nên thay x=-3 vào (1) ta đc:
f(-3)= \(\left(-3\right)^3+3.\left(-3\right)^2+5.\left(-3\right)+a=0\) 0
<=> \(-15+a=0\)
<=>a=15
Vậy vs a=15 thì f(x) chia hết cho g(x)
C1: Gọi đa thức thương là Q(x)
Vì x^4 : x^2 = x^2
=> đa thức có dạng x^2+mx+n
Đề x^4 - 3x^2 + ax+b chia hết x^2 - 3x + 2
=> x^4 - 3x^2 + ax + b = (x^2 - 3x + 2)(x^2 + mx + n)
x^4+ 0x^3 - 3x^2 +ax+b = x^4 +mx^3 +(x^2)n -3x^3 -3mx^2 - 3xn + 2x^2 + 2mx + 2n
x^4 + 0x^3 -3x^2 + ax+b = x^4 + x^3(m-3) - x^2(3m - n -2) +x(2m - 3n) +2n
<=>| 0 = m-3 <=> | m = 3
| 3=3m-n-2 | b= 8
| a=2m-3n | n = 4
| b = 2n | a = -6
Vậy a= -6, b= 8
Cách 1. Sử dụng định lí Bezout :
Vì f(x) chia hết cho g(x) nên ta có thể biểu diễn thành : \(f\left(x\right)=g\left(x\right).g'\left(x\right)\) với g'(x) là đa thức thương
hay \(f\left(x\right)=\left(x-1\right)\left(x-2\right).g'\left(x\right)\)
Khi đó , theo định lí Bezout ta có \(\hept{\begin{cases}f\left(1\right)=a+b=0\\f\left(2\right)=7+4a+2b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a+b=0\\4a+2b=-7\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{7}{2}\\b=\frac{7}{2}\end{cases}}\)
Cách 2. Sử dụng HỆ SỐ BẤT ĐỊNH
Giả sử \(f\left(x\right)=x^3+ax^2+bx-1=\left(x^2-3x+2\right).\left(x+c\right)\)(Vì bậc cao nhất của f(x) là 3)
\(\Rightarrow x^3+ax^2+bx-1=x^3+x^2\left(c-3\right)+x\left(2-3c\right)+2c\)
Theo hệ số bất định thì \(\hept{\begin{cases}2c=-1\\2-3c=b\\c-3=a\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-\frac{1}{2}\\b=\frac{7}{2}\\a=-\frac{7}{2}\end{cases}}\)
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x 2 -4x+1-4x 2+25=18
26-4x=18
4x=8
x=2
a,27x-18=2x-3x^2
<=> 3x^2-2x+27-18x=0
<=> 3x^2-20x+27=0
\(\Delta\)= 20^2-4-12.27
tính \(\Delta\)rồi tìm x1 ,x2
Trả lời:
a, \(\left(x^2-2y\right)\left(x^4+2x^2y+4y^2\right)-x^3\left(x-y\right)\left(x^2+xy+y^2\right)+8y^3\)
\(=\left(x^2\right)^3-\left(2y\right)^3-x^3\left(x^3-y^3\right)+8y^3\)
\(=x^6-8y^3-x^6+x^3y^3+8y^3\)
\(=x^3y^3\)
b, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)
\(=x^3-8-\left(x^3-3x^2+3x-1\right)+7\)
\(=x^3-8-x^3+3x^2-3x+1+7\)
\(=3x^2-3x\)
c, \(x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x\left(4-x^2\right)+x^3+27\)
\(=4x-x^3+x^3+27\)
\(=4x+27\)
\(x^2-5x+6=\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)
1, <=>x^2-x-2 = x^2-4
<=>x^2-4-x^2+x+2 = 0
<=> x-2 = 0
<=> x=2
2, <=> (x-2).(x-3)=0
<=> x-2 = 0 hoặc x-3 = 0
<=> x=2 hoặc x=3
2x^3 - 3x^2 + x + a x + 2 2x^3 - 3x^2 2x^2 - 7x + 15 2x^2 + 4x^2 -7x^2 + x -7x^2 - 14x 15x + a 15x + 30
Để \(2x^3-3x^2+x+a⋮\left(x+2\right)\) thì:
\(15x+a=15x+30\)
\(\Leftrightarrow a=30\)
vì phép chia trên là phép chia hết nên số dư cuối cùng bằng 0. Để dư bằng 0 thì a=30
(áp dụng lược đồ horner)