Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3-5x^2+8x+a=2x\left(x^2-2x+3\right)-\left(x^2-2x+3\right)+a+3\)
\(\left(2x^3-5x^2+8x+a\right)⋮\left(x^2-2x+3\right)\Leftrightarrow a+3=0\Leftrightarrow a=-3\)
a) B(-1) = 2.(- 1)2 - (- 1) + 1 = 4
b) Thực hiện phép chia ta có:
\(2x^3+5x^2-2x+a=\left(x+3\right)+\frac{a-3}{2x^2-x+1}\)
Vậy nên để đa thức A chia hết cho đa thức B thì a - 3 = 0 hay a = 3.
c) Để B = 1 thì \(2x^2-x+1=1\Leftrightarrow2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
Đặt phép chia ta thấy A(x) chia cho B(x) được x^2-2x-1/2 và dư m-3/2
Để A(x) chia hết cho B(x) thì m-3/2=0 <=> m=3/2
(bạn biết cách chia đa thức một biến rồi chứ)
Đa thức \(x^2-1\)có nghiệm \(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)
-1 và 1 là hai nghiệm của đa thức \(x^2-1\)
Để đa thức \(2x^3-x^2+ax+b\)chia hết cho đa thức \(x^2-1\)thì -1 và 1 cũng là hai nghiệm của đa thức \(2x^3-x^2+ax+b\)
Nếu x = -1 thì \(-2-1-a+b=0\Leftrightarrow a-b=-3\)(1)
Nếu x = 1 thì \(2-1+a+b=0\Leftrightarrow a+b=-1\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=\frac{-3-1}{2}=-2\\b=\frac{-1+3}{2}=1\end{cases}}\)
Vậy a = -2, b = 1
Ta có: 2x3+5x2-2x+a : 2x2-x+1=x=3 dư a-3
Muốn phép chia trên chia hết thì : a-3=0
⇒a=3