K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2020

Đặt \(n^2+2004=a^2\)

\(\Leftrightarrow a^2-n^2=2004\)

\(\Leftrightarrow\left(a-n\right)\left(a+n\right)=2004\)

Để ý rằng \(2004=2^2\cdot3\cdot167\)

Nên cậu cứ xét ước nha ! 

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3

28 tháng 8 2020

Bài làm:

Đặt \(a^2+a+43=x^2\)

\(\Leftrightarrow4a^2+4a+172=4x^2\)

\(\Leftrightarrow\left(4a^2+4a+1\right)+171=4x^2\)

\(\Leftrightarrow\left(2a+1\right)^2+171=4x^2\)

\(\Leftrightarrow4x^2-\left(2a+1\right)^2=171\)

\(\Leftrightarrow\left(2x-2a-1\right)\left(2x+2a+1\right)=171=1.171=3.57=9.19\)

Ta thấy \(4x^2-\left(2a+1\right)^2=171\Rightarrow2x>2a+1\), mà x là số tự nhiên nên

=> \(\hept{\begin{cases}2x-2a-1>0\\2x+2a+1>0\end{cases}}\Rightarrow2x-2a-1< 2x+2a+1\)

Ta xét các TH sau:

+ Nếu: \(\hept{\begin{cases}2x-2a-1=1\\2x+2a+1=171\end{cases}}\Rightarrow4a+2=170\Leftrightarrow4a=168\Rightarrow a=42\)

+ Nếu: \(\hept{\begin{cases}2x-2a-1=3\\2x+2a+1=57\end{cases}\Rightarrow}4a+2=54\Leftrightarrow4a=52\Rightarrow a=13\)

+ Nếu: \(\hept{\begin{cases}2x-2a-1=9\\2x+2a+1=19\end{cases}}\Rightarrow4a+2=10\Leftrightarrow4a=8\Rightarrow a=2\)

Vậy \(a\in\left\{2;13;42\right\}\) thì a2+a+43 là số chính phương

1 tháng 3 2020

https://olm.vn/hoi-dap/detail/216909810577.html tham khảo

28 tháng 4 2024

a)

Xét x=0 => A = 1 không là số nguyên tố

Xét x=1 => A= 3 là số nguyên tố (chọn)

Xét x>1

Có A = x14+ x13 + 1 = x14 - x+ x13 - x + x+ x + 1

A = x2(x12-1) + x(x12-1) + x2+x+1

A = (x2+x)(x3*4-1) + x2 + x + 1

Có x3*4 chia hết cho x3

=> x3*4-1 chia hết cho x3 - 1 = (x-1)(x2+x+1)

=> x3*4-1 chia hết cho x2+x+1

=>A chia hết cho x2+x+1 mà x2+x+1 >0 (do x>1)

=> A là hợp số với mọi x > 1 (do A chia hết cho x2+x+1)

 

6 tháng 8 2017

Để A là số chính phương \(\Leftrightarrow A=a^2\left(a\in Z\right)\)

\(\Leftrightarrow x^2+x+6=a^2\)

\(\Leftrightarrow4x^2+4x+24=4a^2\)

\(\Leftrightarrow\left(4x^2+4x+1\right)+23=4a^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2a\right)^2=-23\)

\(\Leftrightarrow\left(2x-2a+1\right)\left(2x+2a+1\right)=-23\)

=> 2x - 2a + 1 và 2x + 2a + 1 là ước của - 23

Tới đây dễ rồi nha