Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)
\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)
\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)
Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:
\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)
\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)
G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)
=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)
=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)
=> G = \(\frac{2.50}{1.51}\)
=> G = \(\frac{100}{51}\)
= (1/2).(2/3).(4/5).(5/6)......(2016/2017).(2017/2018)
=1.2.3.4.5......2016.2017/2.3.4.5.....2017.2018
=1/2018
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\cdot\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)
\(=\frac{1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot2016\cdot2017}{2\cdot3\cdot4\cdot\cdot\cdot\cdot2017\cdot2018}\)
\(=\frac{1}{2018}\)
đụ cha mi
mi trù ta thi rớt HK II mà ta giúp mày hả
mấy bài này cũng dễ ẹt nữa
đừng có mơ ta sẽ giúp mày
ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha
\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{99\cdot101}\right)\)
\(B=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\frac{100^2}{99\cdot101}\)
\(B=\frac{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot100^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot\cdot\cdot99\cdot101}\)
\(B=\frac{\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot\cdot\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot\cdot\cdot101\right)}\)
\(B=\frac{100\cdot2}{1\cdot101}\)
\(B=\frac{200}{101}\)
\(=\left[\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{9998}{9999}\right]\cdot\frac{1999}{2000}=\frac{1\cdot2\cdot3\cdot4\cdot...\cdot9998}{2\cdot3\cdot4\cdot5\cdot...\cdot9999}\cdot\frac{1999}{2000}=\frac{1}{9999}\cdot\frac{1999}{2000}=\frac{1}{2000}\)
=\(\frac{1}{2}\). \(\frac{2}{3}\).\(\frac{3}{4}\)... \(\frac{1999}{2000}\)
=\(\frac{1}{2}\)- \(\frac{1999}{2000}\)
= \(\frac{-999}{2000}\)
#)Giải :
\(\left(1-\frac{1}{15}\right)\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)...\left(1-\frac{1}{210}\right)=\frac{14}{15}\times\frac{20}{21}\times\frac{27}{28}\times...\times\frac{209}{210}\)
\(=\frac{28}{30}\times\frac{40}{42}\times\frac{54}{56}\times...\times\frac{418}{420}=\frac{4\times7}{5\times6}\times\frac{5\times8}{6\times7}\times\frac{6\times9}{7\times8}\times...\times\frac{19\times22}{20\times21}\)
\(=\frac{4\times5\times6\times...\times19}{5\times6\times7\times...\times20}\times\frac{7\times8\times9\times...\times22}{6\times7\times8\times...\times21}=\frac{4}{20}\times\frac{22}{6}=\frac{11}{15}\)
\(\left(1-\frac{1}{15}\right).\left(1-\frac{1}{21}\right).\left(1-\frac{1}{28}\right).....\left(1-\frac{1}{210}\right)\)
\(=\left(\frac{15}{15}-\frac{1}{15}\right).\left(\frac{21}{21}-\frac{1}{21}\right).\left(\frac{28}{28}-\frac{1}{28}\right).....\left(\frac{210}{210}-\frac{1}{210}\right)\)
\(=\frac{14}{15}.\frac{20}{21}.\frac{27}{28}....\frac{209}{210}\)
\(=\frac{2.7}{3.5}.\frac{5.4}{7.3}.\frac{3.9}{4.7}....\frac{11.19}{21.10}\)
\(=\frac{2}{3}.\frac{19}{10}\)
\(=\frac{19}{15}\)
\(\left(1-\frac{1}{3}\right).\left(1-\frac{1}{6}\right).\left(1-\frac{1}{10}\right).\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{780}\right).a=1\)
\(\left(\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{779}{780}\right).a=1\)
\(\left(\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{1558}{1560}\right).a=1\)
\(\left(\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}...\frac{38.41}{39.40}\right).a=1\)
\(\left(\frac{1.2.3.4...38}{3.4.5.6..40}.\frac{4.5.6.7...41}{2.3.4.5..39}\right).a=1\)
\(\left(\frac{2}{39.40}.\frac{40.41}{2.3}\right).a=1\)
\(\frac{41}{39.3}.a=1\)
\(\frac{41}{117}.a=1\)
\(a=1:\frac{41}{117}\)
\(a=1.\frac{117}{41}=\frac{117}{41}\)
Vậy a = 117/41
Ủng hộ mk nha ^_-
các bn giups mk đi mai mk phải nộp bài rùi