Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức \(x^2+3x-10\)có nghiệm \(\Leftrightarrow x^2+3x-10=0\)
Ta có: \(\Delta=3^2+4.10=49,\sqrt{\Delta}=7\)
\(\Rightarrow x_1=\frac{-3-7}{2}=-5;x_2=\frac{-3+7}{2}=2\)
-5 và 2 là hai nghiệm của đa thức \(x^2+3x-10\)
Để f(x)=ax3+bx2+5x-50 chia hết cho đa thức x2+3x-10 thì -5 và 2 cũng là hai nghiệm của đa thức f(x)=ax3+bx2+5x-50
Nếu x = -5 thì \(-125a+25b-25+50=0\Leftrightarrow5a-b=-1\)(1)
Nếu x = 2 thì \(8a+4b+10-50=0\Leftrightarrow2a+b=10\)(2)
Lấy (1) + (2), ta được: \(7a=9\Leftrightarrow a=\frac{9}{7}\)
\(\Rightarrow b=10-2.\frac{9}{7}=\frac{52}{7}\)
Vậy \(a=\frac{9}{7}\)và \(b=\frac{52}{7}\)
a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)
Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:
\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)
<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5
lười quá ~~
bài 1
vì đa thức bị chia bậc 2, đa thức chia bậc nhất
=> đa thức thương sẽ có dạng bx+c
theo đề ta có
\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)
vậy a = -5
bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé
Chia hết cho (x + 3) và (x - 3) có nghĩa là chia hết cho x2 - 9
Ta có 3x3 + ax2 + bx + 9 = (x2 - 9)(3x + a) + x(b + 27) + 9 + 9a
Để đây là phép chia hết thì phần dư phải bằng 0 hay
\(\hept{\begin{cases}9+9a=0\\b+27=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-1\\b=-27\end{cases}}\)
a) Mình không rảnh đặt phép chia, hệ số bất định vậy.
Giả sử khi A chia hết cho B thì sẽ được thương là x+c
\(\Rightarrow A=B\left(x+c\right)\)
\(\Leftrightarrow x^3+ax^2+2x+b=\left(x^2+2x+3\right)\left(x+c\right)\)
\(\Leftrightarrow x^3+ax^2+2x+b=x^3+\left(2+c\right)x^2+\left(3+2c\right)x+3c\)
\(\Leftrightarrow\hept{\begin{cases}a=2+c\\2=3+2c\\b=3c\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{-3}{2}\\c=\frac{-1}{2}\end{cases}}\)
KL: \(a=\frac{3}{2};b=\frac{-3}{2}\)
b) Giải tương tự.
Chúc bạn học tốt!