K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

Ta có :  \(a+5=7^c\Leftrightarrow5=7^c-a\)

Thay \(a^3+5a^2+21=7^b\) ta được :

\(a^3\left(7^c-a\right)\times a^2+21=7^b\)

\(\Rightarrow a^3+7^c\times a^2-a^3+21=7^b\)

\(\Rightarrow7^c\times a^2+21=7^b\)

\(\Rightarrow7^b-7^c\times a^2=21\left(1\right)\)

\(\Rightarrow7^c\times\left(7^{b-c}-a^2\right)=21\left(2\right)\)

Từ (1) suy ra \(7^b>7^c\times a^2\Rightarrow b>c\)

\(\Rightarrow7^{b-c}\) nguyên 

Mà : \(a^2\) nguyên

Từ đó suy ra \(7^{b-c}-a^2\) nguyên

Kết hợp với \(\left(2\right)\Rightarrow21⋮7^c\)

Mà : \(7^c\ge7\) do c nguyên dương nên \(7^c=7\)\(\Rightarrow c=1\)

Thay vào \(a+5=7^c\) ta được \(a+5=7^1\Leftrightarrow a+5=7\Leftrightarrow a=2\)

Thay c =1 ; a=2 vào (2) ta có :

\(7^1\times\left(7^{b-1}-2^2\right)=21\)

\(\Rightarrow7^{b-1}-4=3\)

\(\Rightarrow7^{b-1}=7\)

\(\Rightarrow b-1=1\)

\(\Rightarrow b=2\)

Vậy a = 2 ; b = 2 ; c = 1

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
20 tháng 2 2018

a) Từ giả thiết : \(a^2+2c^2=3b^2+19\Rightarrow a^2+2c^2-3b^2=19\)

Ta có : \(\frac{a^2+7}{4}=\frac{b^2+6}{5}=\frac{c^2+3}{6}=\frac{3b^2+18}{15}=\frac{2c^2+6}{12}\)\(=\frac{a^2+7+2c^2+6-3b^2-18}{4+12-15}=\frac{14}{1}=14\)

\(\Rightarrow\)\(a^2=49\Rightarrow a=7\)

\(\Rightarrow\)\(b^2=64\Rightarrow b=8\)

\(\Rightarrow\)\(c^2=81\Rightarrow c=9\)

b) \(P=x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)+x^2=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2\)

\(=\left(x^2+x+1\right)^2\)

Vì \(x^2+x+1=\left(x^2+2x\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Nên \(P\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)

Dấu bằng xảy ra khi và chỉ khi \(x=-\frac{1}{2}\)

21 tháng 2 2018

Bố già giỏi qa

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

19 tháng 12 2016

Bạn biết BĐT Cauchy-Schwarz dạng phân thức không nhỉ?

\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}=\frac{a^4}{ab+ca}+\frac{b^4}{bc+ab}+\frac{c^4}{ca+bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\)

Đến đây áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\) ta có

\(P\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

17 tháng 11 2019

nguowch đề :))

17 tháng 11 2019

\(ab^2+b+7⋮a^2b+a+b\Leftrightarrow a\left(ab^2+b+7\right)-b\left(a^2b+a+b\right)⋮a^2b+a+b\Leftrightarrow7a-b^2⋮a^2b+a+b\left(1\right)\)

\(+,7a=b^2\Rightarrow\left(a;b\right)=\left(7k^2;7k\right)\left(k\text{ nguyên dương}\right)\)

\(+,7a>b^2\text{ từ 1}\Rightarrow7a-b^2\ge a^2b+a+b\Leftrightarrow6a\ge a^2b+b+b^2\text{ mà: b là số nguyên dương}\Rightarrow b< 3\Leftrightarrow b\in\left\{1;2\right\}\)

làm tiếp

\(+,7a< b^2\text{ từ (1)}\Rightarrow b^2-7a\ge a^2b+a+b\Leftrightarrow voli\text{ :)}.Tự\text{ kết luận}\)

23 tháng 2 2018

NGUYỄN CẢNH LINH QUÂN 

chẳng nhẽ CTV ko đc hỏi!

não có vấn đề à bn :))

23 tháng 2 2018

Thế chú học có hơn ai không mà sao chú nói vậy đấy ngon làm đi 

13 tháng 5 2020

Giúp mình với nha ,thanks nhiều

14 tháng 5 2020

Từ giả thiết => \(a\equiv1\left(mod3\right)\), a=3k+1 (\(k\inℕ\)); b\(\equiv2\left(mod3\right)\), b=3q+2 \(\left(q\inℕ\right)\)

=> \(A=4^a+9^b+a+b=1=1+0+1+2\left(mod3\right)\)hay \(A\equiv4\left(mod3\right)\)(1)

Lại có \(4^a=4^{3k+1}=4\cdot64^k\equiv4\left(mod7\right)\)

\(9^b=9^{3q+2}\equiv2^{3q+2}\left(mod7\right)\Rightarrow9^b\equiv4\cdot8^q\equiv4\left(mod7\right)\)

Từ gt => \(a\equiv1\left(mod7\right),b\equiv1\left(mod7\right)\)

Dẫn đến \(A=4^a+9^b+a+b\equiv4+4+1+1\left(mod7\right)\)hay \(A\equiv10\left(mod7\right)\)

Từ (1) => \(A\equiv10\left(mod3\right)\)mà 3,7 nguyên tố cùng nhau nên \(A\equiv10\left(mod21\right)\)

=> A chia 21 dư 10