Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 4 số tự nhiên liên tiếp là n,n+1,n+2,n+3
n(n+3)(n+1)(n+2)=24
(n^2+3n)(n^2+3n+2)-24=0
(n^2+3n)^2+2(n^2+3n)-24=0
n^2+3n=4 hoặc n^2+3n =-6
chúc bn hok tốt
Gọi các số tự nhiên liên tiếp đó lần lượt là x, (x+1) , (x+2) , (x+3) (x > 0)
Theo đề bài, ta có : \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
Giải phương trình trên như sau : \(\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]=24\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)=24\)(1)
Đặt \(x^2+3x+1=t\)suy ra pt (1) trở thành \(\left(t-1\right)\left(t+1\right)=24\Leftrightarrow t^2-1=24\Leftrightarrow t^2=25\Rightarrow t=-5\) hoặc \(t=5\)
Với \(t=5\)ta có phương trình \(x^2+3x-4=0\Leftrightarrow x=-4\)(Loại) \(x=1\)( Nhận )
Với \(t=-5\)ta có phương trình \(x^2+3x+6=0\). Phương trình này vô nghiệm.
Vậy 4 số tự nhiên liên tiếp cần tìm lần lượt là : 1;2;3;4
gọi 4 số tự nhiên liên tiếp lần lượt là x;x+1;x+2;x+3
theo bài ra ta có (x+2)(x+3)-x(x+1)=34
\(\Leftrightarrow x^2+5x+6-x^2-x=34\)
\(\Leftrightarrow4x+6=34\)
\(\Leftrightarrow x=7\)
vậy 4 số tự nhiên liên tiếp là 7;8;9;10
gọi 4 số tự nhiên đó là a,b,c,d.Theo đầu bài ta có cd-ab=34 mà đó là 4 số tự nhiên liên tiếp suy ra b=a+1,c=a+2,d=a+3suy ra được
(a+3)(a+2)-(a+1)a=34 tính được a=7suy ra dãy cần tìm là 7,8,9,10
2) gọi bốn số tự nhiên lẽ liên tiếp là: 2x+1;2x+3;2x+5;2x+7
Vì tích của 2 số bất kì - tích của 2 số đầu = 160 nên ta có phương trình:
(2x+5)(2x+7)-(2x+1)(2x+3)=160
<=>4x2+24x+35-4x2-8x-3=160
<=>16x+32=160
<=>16x =128
<=>x =8
vậy số thứ nhất là 2x+1=2.8+1=17
=> 4 số đó là :
17;19;21;23
Gọi 2 số chẵn liên tiếp cần tìm là x;x + 2 (x > 0;x ∈ Z)
Theo bài ra ta có: x(x + 2) = 24 ⇔ x 2 + 2 x - 24 = 0 ⇔ x 2 + 6 x - 4 x - 24 = 0
⇔x(x + 6) - 4(x + 6) = 0
⇔ (x - 4)(x + 6) = 0 ⇔ x = 4 (Do x + 6 > 0∀ x > 0 )
Vậy hai số cần tìm là 4;6.
Chọn đáp án B.
Gọi 2 số chẵn liên tiếp cần tìm là x; x + 2 (x chia hết 2; x ∈ N)
Theo bài ra ta có: x ( x + 2 ) = 24 ⇔ x 2 + 2 x - 24 = 0
⇔ (x - 4)(x + 6) = 0 ⇔ x = 4 (Do x + 6 > 0 ∀ x ∈ N)
Vậy hai số cần tìm là 4; 6.
Chọn B
12x13x14x15
Các số đó lần lượt là 12;13;14;15