Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 3 số lớn hơn 0 có tổng bằng 4. CMR tổng của 2 số bất kì trong 3 số đó không bé hơn tích của 3 số
a: Gọi hai số cần tìm là 2k;2k+2
Theo đề, ta có:
\(\left(2k+2\right)^3-8k^3=2012\)
\(\Leftrightarrow24k^2+24k+8=2012\)
\(\Leftrightarrow24k^2+24k-2004=0\)
\(\Leftrightarrow2k^2+2k-167=0\)
=>Sai đề rồi bạn, vì phương trình này ko có nghiệm nguyên
d: \(a^3+b=14\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=14\)
=>ab=-1
\(a^2+b^2=\left(a+b\right)^2-2ab=2^2-2\cdot\left(-1\right)=4\)
\(\left(a^3+b^3\right)\left(a^2+b^2\right)=56\)
\(\Leftrightarrow a^5+a^3b^2+a^2b^3+b^5=56\)
\(\Leftrightarrow a^5+b^5+a^2b^2\left(a+b\right)=56\)
\(\Leftrightarrow a^5+b^5=54\)
Đặt d = (a, b, c, d) thì a = dx; b = dy; c = dz; d = dt với (x, y, z, t) = 1.
Dễ thấy x, y, z, t có tính chất giống như a, b, c, d.
Giả sử không tồn tại 3 số trong x, y, z, t bằng nhau.
Gọi x là số lớn nhất thì x > 1. Nếu x có ước nguyên tố p khác 2 thì p lẻ. Ta thấy \(y^2+z^2⋮xt\Rightarrow y^2+z^2⋮p\). Tương tự \(z^2+t^2⋮p;t^2+y^2⋮p\Rightarrow y^2-z^2⋮p\Rightarrow2y^2⋮p\Rightarrow y⋮p\). Do đó \(x,z,t⋮p\), vô lí.
Do đó x chỉ có ước nguyên tố là 2.
Nếu \(x=2^k\left(k>1\right)\) thì tương tự ta có \(2y^2⋮2^k\Rightarrow y⋮2\). Tương tự z, t chia hết cho 2 (vô lí)
Do đó x = 2.
Giả sử \(x\ge y\ge z\ge t\) thì y = 2; z = t = 1 (Do không có 3 số bằng nhau)
Thử lại ta thấy không thỏa mãn.
Vậy...
2) gọi bốn số tự nhiên lẽ liên tiếp là: 2x+1;2x+3;2x+5;2x+7
Vì tích của 2 số bất kì - tích của 2 số đầu = 160 nên ta có phương trình:
(2x+5)(2x+7)-(2x+1)(2x+3)=160
<=>4x2+24x+35-4x2-8x-3=160
<=>16x+32=160
<=>16x =128
<=>x =8
vậy số thứ nhất là 2x+1=2.8+1=17
=> 4 số đó là :
17;19;21;23