Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=77^2+77\cdot22+77=7700\)
b: \(B=2\cdot\left(1.007+0.006\right)+2\left(-0.006-1.007\right)\)
\(=0\)
c: \(C=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2=\left(3-1\right)\cdot\left(3-2\right)^2=2\)
d: \(D=\left(-5\right)^2\cdot2-2+\left(-5\right)\cdot2^2+5\)
\(=25\cdot2-2-5\cdot4+5\)
=50-2-20+5
=55-22=33
Bài này cũng dễ mà:
Áp dụng BĐT Cô-si, ta có:
\(y+z+1\ge3\sqrt[3]{yz}\)
\(\Rightarrow\)\(\dfrac{y+z+1}{3}\ge\sqrt[3]{yz}\)
\(\Rightarrow\)\(\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{3x}{y+z+1}\)
\(\Rightarrow\)\(\sum\dfrac{x}{\sqrt[3]{yz}}\ge\sum\dfrac{3x}{y+z+1}\)
Mà \(\sum\dfrac{3x}{y+z+1}=\sum\dfrac{3x^2}{xy+xz+x}\)
Áp dụng BĐT Cauchy -Schwaz:
\(\sum\dfrac{3x^2}{xy+xz+x}\ge\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
Mà:
\(xy+yz+xz\le x^2+y^2+z^2\)(BĐT phụ)
\(\Rightarrow\)\(2\left(xy+yz+xz\right)\le2\left(x^2+y^2+z^2\right)=6\)
Áp dụng BĐT Bunhicopski:
\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)
\(\Rightarrow x+y+z\le3\)
\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le6+3=9\)
\(\Rightarrow\)\(\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{3\left(x+y+z\right)^2}{9}\ge\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+xz\left(ĐPCM\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\)x=y=z=1
x2 + y2 + z2 - xy - 3y - 2z + 4 = 0
\(\Leftrightarrow\)(x2 - xy +\(\frac{y^2}{4}\)) + (\(\frac{3y^2}{4}\) - 3y + 3) + (z2 - 2z + 1) = 0
\(\Leftrightarrow\)(x -\(\frac{y}{2}\))2 + (z - 1)2 + 3(\(\frac{y}{2}\) - 1)2 = 0
\(\Leftrightarrow\left\{\begin{matrix}x-\frac{y}{2}=0\\z-1=0\\\frac{y}{2}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=2\\z=1\end{matrix}\right.\)
Lời giải:
Nhân $4$ vào cả hai vế, phương trình trở thành:
\(4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)
\(\Leftrightarrow (2x-y)^2+3(y-2)^2+(2z-2)^2=0\)
Vì \((2x-y)^2, (y-2)^2,(2z-2)^2\geq 0\forall x,y,z\in\mathbb{Z}\) nên
\((2x-y)^2+3(y-2)^2+(2z-2)^2\geq 0\)
Dấu $=$ xảy ra khi \(\left\{\begin{matrix} 2x-y=0\\ y-2=0\\ 2z-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\\ z=1\end{matrix}\right.\)
Vậy \((x,y,z)=(1,2,1)\) là nghiệm của HPT
Bài 1:
Ta có:
\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)\)
\(=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\geq \frac{3}{4}(x+y)^2\)
\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}(x+y)}{2}\)
Hoàn toàn tương tự:
\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}(y+z)}{2}; \sqrt{z^2+xz+x^2}\geq \frac{\sqrt{3}(x+z)}{2}\)
Cộng theo vế các BĐT trên:
\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$
Bài 2:
BĐT cần chứng minh tương đương với:
$4(a^9+b^9)-(a+b)(a^3+b^3)(a^5+b^5)\geq 0$
$\Leftrightarrow 4(a+b)(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a+b)(a^8+a^3b^5+a^5b^3+b^8)\geq 0$
$\Leftrightarrow 4(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a^8+a^3b^5+a^5b^3+b^8)\geq 0$
$\Leftrightarrow 3a^8+3b^8+4a^6b^2+4a^2b^6+4a^4b^4-(4a^7b+4ab^7+5a^5b^3+5a^3b^5)\geq 0$
$\Leftrightarrow (a-b)^2(a^2-ab+b^2)(3a^4+5a^3b+7a^2b^2+5ab^3+3b^4)\geq 0$
BĐT trên luôn đúng vì:
$(a-b)^2\geq 0, \forall a,b$
$a^2-ab+b^2=(a-\frac{b}{2})^2+\frac{3}{4}b^2\geq 0, \forall a,b$
$3a^4+5a^3b+7a^2b^2+5ab^3+3b^4=3(a^4+b^4+2a^2b^2)+a^2b^2+5ab(a^2+b^2)$
$=3(a^2+b^2)^2+5ab(a^2+b^2)+a^2b^2$
$=(a^2+b^2)(3a^2+3b^2+5ab)+a^2b^2=(a^2+b^2)[3(a+\frac{5}{6}b)^2+\frac{11}{12}b^2]+a^2b^2\geq 0$ với mọi $a,b$
Do đó ta có đpcm.
Dấu "=" xảy ra khi $a=b$ hoặc $a+b=0$
\(4x^2+4y^2+4z^2-4xy-12y-8z+12< 0\)
\(\Leftrightarrow\left(2x-y\right)^2+3\left(y-2\right)^2< 4-4\left(z-1\right)^2\)
Do \(\left(2x-y\right)^2+3\left(y-2\right)^2\Rightarrow4-4\left(z-1\right)^2>0\)
\(\Rightarrow\left(z-1\right)^2< 1\Rightarrow z-1=0\Rightarrow z=1\)
\(\Rightarrow\left(2x-y\right)^2< 3-3\left(y-2\right)^2\)
Tương tự ta có \(3-3\left(y-2\right)^2>0\Rightarrow y-2=0\Rightarrow y=2\)
\(\left(2x-2\right)^2< 3\Rightarrow\left(x-1\right)^2< \frac{3}{4}\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
Lời giải:
Do $xyz=1$ nên tồn tại $a,b,c>0$ sao cho $(x,y,z)=(\frac{a}{b}, \frac{b}{c}, \frac{c}{a})$
Khi đó bài toán trở thành:
Cho $a,b,c>0$. CMR: \(2\left(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}\right)-\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\geq 3\)
\(\Leftrightarrow \frac{2(a^3+b^3+c^3)-(a^2b+b^2c+c^2a)}{abc}\geq 3\)
\(\Leftrightarrow 2(a^3+b^3+c^3)\geq a^2b+b^2c+c^2a+3abc(*)\)
---------------
Áp dụng BĐT AM-GM:
\(a^3+b^3+c^3\geq 3\sqrt[3]{a^3b^3c^3}=3abc(1)\)
Và:
\(\frac{a^3}{3}+\frac{a^3}{3}+\frac{b^3}{3}\geq 3\sqrt[3]{\frac{a^6b^3}{3^3}}=a^2b\)
\(\frac{b^3}{3}+\frac{b^3}{3}+\frac{c^3}{3}\geq 3\sqrt[3]{\frac{b^6c^3}{3^3}}=b^2c\)
\(\frac{c^3}{3}+\frac{a^3}{3}+\frac{a^3}{3}\geq 3\sqrt[3]{\frac{c^6a^3}{3^3}}=c^2a\)
Cộng theo vế và rút gọn \(\Rightarrow a^3+b^3+c^3\geq a^2b+b^2c+c^2a(2)\)
Lấy $(1)+(2)$ ta thu được $(*)$
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$
Đặt \(\left(x;y;z\right)=\left(\frac{a'}{b'};\frac{b'}{c'};\frac{c'}{a'}\right)\).Cần chứng minh:
\(2\left(\frac{a'^2}{b'c'}+\frac{b'^2}{c'a'}+\frac{c'^2}{a'b'}\right)-\left(\frac{b'}{a'}+\frac{c'}{b'}+\frac{a'}{c'}\right)\)
Đặt \(\left(\frac{a'}{b'};\frac{b'}{c'};\frac{c'}{a'}\right)=\left(a;b;c\right)\). Bây giờ bài toán trở nên dễ dàng hơn:
Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng \(2\left(ab+bc+ca\right)-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\). Rất hiển nhiên điều này đúng theo AM-GM: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=3\)
Ta có điều phải chứng minh.
Is that true? Nếu nó đúng, em nghĩ bài này mấu chốt là nhìn ra cách đặt đầu tiên, và một chút may mắn:)
Từ x + y = 2 => x = 2 - y thay vào xy - z2 = 1
Ta có: \(\left(2-y\right)y-z^2=1\)
<=> \(z^2+y^2-2y+1=0\)
<=> \(z ^2+\left(y-1\right)^2=0\)
<=> \(\left\{{}\begin{matrix}z=0\\y=1\end{matrix}\right.\) => x = 2 - 1 = 1
Vậy x = y = 1 và z = 0