Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(a\ne0,a+b\ne0,a+b+c\ne0\)
do a,b,c là các số tự nhiên => \(\frac{1}{a}\ge\frac{1}{a+b};\frac{1}{a}\ge\frac{1}{a+b+c}\)
=>\(\frac{1}{a}+\frac{1}{a+b}+\frac{1}{a+b+c}=1\le\frac{1}{a}+\frac{1}{a}+\frac{1}{a}=\frac{3}{a}\)
=>\(0< a\le3\)
Sau đó bạn xét từng trường hợp a=1,2,3 để giải pt nghiệm nguyên tìm b,c là xong nhé
làm tiếp:
Với a, b, c là số tự nhiên
Th1: a = 1 ta có: \(\frac{1}{1}+\frac{1}{1+b}+\frac{1}{1+b+c}=1\)
<=> \(\frac{1}{1+b}+\frac{1}{1+b+c}=0\)loại vì 1 + b; 1 + b + c >0
TH2: a = 2 ta có: \(\frac{1}{2}+\frac{1}{2+b}+\frac{1}{2+b+c}=1\)
<=> \(\frac{1}{2+b}+\frac{1}{2+b+c}=\frac{1}{2}\)
=> \(\frac{1}{2}\le\frac{1}{2+b}+\frac{1}{2+b}=\frac{2}{2+b}\)
=> \(b\le2\)
+) Với b = 0 => \(\frac{1}{2}+\frac{1}{2+c}=\frac{1}{2}\)loại
+) Với b = 1 => \(\frac{1}{3}+\frac{1}{3+c}=\frac{1}{2}\)<=> c = 3 (tm )
+) Với b = 2 => \(\frac{1}{4}+\frac{1}{4+c}=\frac{1}{2}\)<=> c = 0 (tm)
TH3: a = 3 ta có: \(\frac{1}{3}+\frac{1}{3+b}+\frac{1}{3+b+c}=1\)
<=> \(\frac{1}{3+b}+\frac{1}{3+b+c}=\frac{2}{3}\)
=> \(\frac{2}{3}\le\frac{1}{3+b}+\frac{1}{3+b}=\frac{2}{3+b}\)
=> b = 0 => c = 0
Vậy bộ 3 số tự nhiên là: (3; 0; 0) ; ( 2; 1; 3) ; (2; 2; 0)
Xét \(\left(2008a+3b+1\right)\left(2008^a+b\right)=225\)có \(225\) là số lẻ nên \(2008^a+3b+1\) và \(2008^a+b\) phải cùng là số lẻ
\(+\)Nếu \(a\ne0\) thì \(2008^a+b\) nhận giá trị là một số chẵn. Như vậy, để giá trị của \(2008^a+b\) lẻ thì \(b\)phải là một số lẻ.
Suy ra \(3b\) nhận giá trị lẻ. Từ đây, ta dễ dàng chứng minh được \(2008^a+3b+1\)nhận giá trị chẵn (vô lí)
\(+\)Nếu \(a=0\) thì \(\left(2008.0+3b+1\right)\left(2008^0+b\right)=225\Leftrightarrow\left(3b+1\right)\left(b+1\right)=225\)
\(\Leftrightarrow\left(3b+1\right)\left(b+1\right)=225.1=75.3=45.5=25.9=15.15\)
Vì \(a;b\in N\) nên \(3b+1>b+1\)nên \(3b+1=225;75;45;25\)và \(b+1=1;3;5;9\)
Mặt khác, ta có: \(3b+1\)chia cho \(3\) dư \(1\)
Do đó: \(3b+1=25;b+1=9\)
\(\Rightarrow b=8\)
Vậy, \(a=0;b=8\)
kệ mẹ mày