K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

Câu hỏi của Trần Ngọc Lan - Toán lớp 6 - Học toán với OnlineMath

29 tháng 10 2017

p;q;r lần lượt là 3;5;7

3 tháng 4 2017

Vai trò của p,q,r là như nhau nên giả sử như sau:p<q<r

Xét p=2, ta tìm được 3 số là:2;3;5(ko thỏa mãn)

Xét p=3,ta tìm được 3 số là:3;5;7(thỏa mãn)

Xét p>3

Bổ đề:Mọi số nguyên tố>3nên xem bình phương lên thì luôn chia 3 dư 1 thật vậy các số nguyên tố lớn hơn 3 nên có dạng:3k+1hoặc 3k+2

Nếu có dạng 3k+1,ta có: (3k+1)2=9k2+6k+1_1(mod3)

Nếu có dạng 3k+2 ,ta có:(3k+2)2=9k2+12k+4_1 (mod3)

Vậy nếu p>3 thì các số q,r>3 nên khi bình phương lên thì đều dư 1

==>p2+q2+r2=0(mod3)

Vậy ta có:(3,5,7)và các hoán vị

24 tháng 1 2019

bạn lương đúng rồi

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại
23 tháng 9 2019

- Vì p > q > r nên : p^2 + q^2 > 2

Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .

=> p^2 ; q^2 ; r^2 là các số lẻ

=> p ; q ; r là các số nguyên tố lẻ

- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)

=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )

= > q = 5 , r = 7

23 tháng 9 2019

giải

- Vì p > q > r nên : p^2 + q^2 > 2

Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .

=> p^2 ; q^2 ; r^2 là các số lẻ

=> p ; q ; r là các số nguyên tố lẻ

- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)

=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )

= > q = 5 , r = 7

7 tháng 9 2021

1 số chính phương khi chia cho 3 dư 1 \(\Rightarrow\)  p2 - q2 + r2 - s2 ⋮ 3

1 số chính phương khi chia cho 8 dư 0, 1 hoặc 4 mà p, q, r, s là số nguyên tố lớn hơn 3 nên  p2 , q2 , r2 ,s2  chia 8 dư 1 (1 số lẻ chia cho 1 số chẵn thì số dư của nó là số lẻ) suy ra p2 - q2 + r2 - s2 ⋮8

Suy ra p2 - q2 + r2 - s2 ⋮24

Trả lời:

undefined

HT nhoa^^

@Min Lin Zin :333

ko hieu cau 3 lam

31 tháng 5 2018

hóng bài giải câu 1 quá