Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì vai trò của ba số x,y,z là như nhau
giả sử
\(x\ge y\ge z>0\)
\(\Rightarrow xy\ge yz;xy\ge xz\)
\(\Rightarrow xy+yz+xz\le3xy\)
\(\Leftrightarrow xyz\le3xy\)
\(\Rightarrow z\le3\)
\(\Rightarrow z\in\left\{1;2;3\right\}\)
\(\Rightarrow\left(x;y;z\right)=\left(1;2;3\right)\) và hoán vị của chúng thỏa mãn phương trình
xy+yz+xz=2xyz
<=>(xy+yz+xz)/(xyz)=2xyz/(xyz)
<=>1/z+1/x+1/y=2 (1)
Giả sử x<hoặc=y<hoặc=z
=>1/x>hoặc bằng 1/y>hoặc bằng 1/z
=>1/x+1/x+1/x>hoặc=2
=>3/x>=2
Mà x thuộc N*
=>x=<1
=>x=1
Thay vào (1),ta được:
1/z+1+1/y=2
=>1/y+1/z=1 (2)
=>1/y+1/y>=1
=>2/y>=1
=>y=<2
=>y=2 hoặc y=1
+ y=1
Thay vào (2)
1/1+1/z=1
=>1/z=0 (loại)
+ y=2
Thay vào (2)
1/2+1/z=1
=>z=2 (thỏa mãn)
Vậy (x;y;z)=(1;2;2)và các hoán vị của chúng
\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
=>đpcm
2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1
= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1
= xz/1+xz+z + 1/z+1+xz + z/xz+z+1
= xz+1+x/1+xz+x = 1 (đpcm)
Xét \(x\le y\le z\) vì x,y,z nguyên dương
\(\Rightarrow xyz\ne0\)và \(x\le y\le z\Rightarrow xyz=x+y+z\le3z\)
\(\Rightarrow xy\le3\Rightarrow xy\in\left\{1;2;3\right\}\)
- Nếu \(xy=1\Rightarrow x=y=1\)ta có: \(2+z=z\)( không thỏa mãn )
- Nếu \(xy=2\Rightarrow x=1;y=2\Rightarrow z=3\)( thỏa mãn ) ( vì \(x\le y\))
- Nếu \(xy=3\Rightarrow x=1;y=3\Rightarrow z=2\)( thỏa mãn ) ( vì \(x\le y\))
Vậy......................................
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3
=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
Không mất tính tổng quát giả sử: \(x\ge y\ge z>0\)
Ta có: \(xy\ge yz;xy\ge xz\)
Ta có: \(xy+yz+xz\le3xy\)
\(\Rightarrow xyz\le3xy\Leftrightarrow z\le3\)
Xét với \(z\in\left\{3;2;1\right\}\left(z\in Z^+\right)\)
Không mất tính tổng quát giả sử: x≥y≥z>0
Ta có: xy≥yz;xy≥xz
Ta có: xy+yz+xz≤3xy
⇒xyz≤3xy⇔z≤3
Xét với z∈{3;2;1}(z∈Z+)
...