Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+2y=5\\y+2z=-7\\z+2x=14\end{cases}}\)
\(\Leftrightarrow x+y+z+2y+2z+2x=5-7+14\)
\(\Leftrightarrow x+y+z+2\left(x+y+z\right)=12\)
\(\Leftrightarrow3\left(x+y+z\right)=12\)
\(\Leftrightarrow x+y+z=4\)
\(\Leftrightarrow\hept{\begin{cases}x+2y=5\\y+2z=-7\\z+2x=14\end{cases}\Leftrightarrow\hept{\begin{cases}4-y-z+2y=5\\y+2z=-7\\z+8-2y-2z=14\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y-z=5\\y+2z=-7\\2y+z=-6\end{cases}}\)
Câu a :
Ta có :
\(\dfrac{x}{y}=\dfrac{7}{3}\Leftrightarrow\) \(\dfrac{x}{7}=\dfrac{y}{3}\) .
Áp dụng dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{5x}{35}=\dfrac{2y}{6}=\dfrac{5x-2y}{35-6}=\dfrac{87}{29}=3\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{7}=3\Rightarrow x=21\\\dfrac{y}{3}=3\Rightarrow y=9\end{matrix}\right.\)
Vậy ......................
Câu b :
Áp dụng dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{19}=2\Rightarrow x=38\\\dfrac{y}{21}=2\Rightarrow y=42\end{matrix}\right.\)
Vậy ....................
Làm mấy câu bạn kia chưa làm:v
\(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
\(\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{6}\right)^2\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
\(=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{1}{4}.4=1\Rightarrow x=\pm1\\y^2=\dfrac{1}{4}.16=4\Rightarrow y=\pm2\\z=\dfrac{1}{4}.36=9\Rightarrow z=\pm3\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x-y}{3}=\frac{2y-z}{5}=\frac{2z-x}{7}=\frac{2x-y+2y-z+2z-x}{3+5+7}=\frac{x+y+z}{15}=\frac{90}{15}=6\)
\(\cdot\frac{2x-y}{3}=6\Rightarrow2x-y=18\Rightarrow2x=18+y\)
\(\frac{2y-z}{5}=6\Rightarrow2y-z=30\Rightarrow2y=z+30\)
\(\frac{2z-x}{7}=6\Rightarrow2z-x=42\Rightarrow2z=x+42\)
Xong ko biết làm nữa
3x/5=2y/7=2z/3
=>x/5/3=y/7/2=z/3/2
=>x/10=y/21=z/9=k
=>x=10k; y=21k; z=9k
2x^2-y^2-z^2=-160
=>2*100k^2-441k^2-81k^2=-160
=>k^2=80/161
TH1: k=căn 80/161
\(x=10\sqrt{\dfrac{80}{161}};y=21\sqrt{\dfrac{80}{161}};z=9\sqrt{\dfrac{80}{161}}\)
TH2: \(k=-\sqrt{\dfrac{80}{161}}\)
=>\(x=-10\sqrt{\dfrac{80}{161}};y=-21\sqrt{\dfrac{80}{161}};z=-9\sqrt{\dfrac{80}{161}}\)
Từ ba đẳng thức ta có
3x+3y+3z=12
=>x+y+z=4
<=>x+2y-y+z=4
<=>5-y+z=4
<=>z-y=-1
Mà y+2z=-7
Cộng vế theo vế ta được
3z=-8
=>z=-8/3
=>y=...
=>x=...
(Phần dưới tự tính cho não nó thông)