Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ý 1:\(14^{14^{14}}=7^{14^{14}}.2^{14^{14}}\)
Dễ chứng minh \(14^{14}⋮4\) và \(14^{14}\) chia 20 dư 16 nên đặt \(14^{14}=4k=20l+16\)
Ta có:\(14^{14^{14}}=7^{4k}.2^{20l+16}=\left(7^4\right)^k.\left(2^{20}\right)^l.2^{16}\)\(=2401^k.1048576^l.65536\)
\(\equiv\left(01\right)^k.\left(76\right)^l.36=01.76.36=2736\equiv36\)(mod 100)
Ý 2:Để ý:\(5^7\equiv5\)(mod 180).Từ đó chứng minh được :\(5^{121}=5^{98}.5^{23}\equiv25.5^5=1625\equiv5\)(mod 180)
Đặt:\(5^{121}=180m+5\).Khi đó:\(17^{5^{121}}=17^{180m+5}=\left(17^{180}\right)^m.17^5\equiv\left(01\right)^m.57=01.57=57\)(mod 100)
Có được :\(17^{180}\equiv01\)(mod 100) là do:\(17^3\equiv13\)(mod 100) mà \(13^6\equiv9\) nên \(17^{18}\equiv13^6\equiv9\)(mod 100)
Lại có:\(9^{10}\equiv01\)(mod 100) \(\Rightarrow17^{180}\equiv9^{10}\equiv01\)(mod 100)
b,Ta có:\(2^{20}=16^5\equiv76\)(mod 100) nên \(2^{2000}=\left(2^{20}\right)^{100}\equiv76^{100}\equiv76\)(mod 100)
\(\Rightarrow2^{2006}=2^{2000}.2^6\equiv76.64=4864\equiv64\)(mod 100)
Đặt \(2^{2006}=100t+64\) ta được \(3^{2^{2006}}=3^{100t+64}=\left(3^{100}\right)^t.3^{64}\equiv\left(001\right)^t.3^{64}=3^{64}\)(mod 1000)
Lại có:\(3^{10}\equiv49\)(mod 1000)\(\Rightarrow3^{60}=\left(3^{10}\right)^6\equiv49^6\equiv201\)(mod 1000)
\(\Rightarrow3^{64}=3^{60}.81\equiv81.201=16281\equiv281\)( mod 1000)
Trần Thị Mỹ Duyên
Bạn giải chưa hết :
Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52
= 100a2 + 100a + 25
= 100a(a + 1) + 25.
Cách tính nhaame bình thường của một số tận cùng bằng chữ số 5;
Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được
(10a + 5)2 = 100a(a + 1) + 25
Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.
Áp dụng;
- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.
- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.
- 652 = 4225
- 752 = 5625.
Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52
= 100a2 + 100a + 25
= 100a(a + 1) + 25.
Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;
Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được
(10a + 5)2 = 100a(a + 1) + 25
Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.
Áp dụng:
- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.
- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.
652 = 4225
752 = 5625
8^4 = 4096
=> 998^4 tận cùng là 6
=> 998^4 + 7984 tận cùng là 6 + 4 = 0
2 + 3 + 4 + 5 +...+2014 = 2027091 vậy chữ số tận cùng là chữ số.
Giải thích số có mũ lẻ thì chữ số tận cùng là chính nó. ví dụ 2014^5 thì chữ số tận cùng là 4. 2014^7 chữ số tận cùng cũng là 4. tương tự. Tức là lấy tất cả các chữ số hàng đơn vị cộng cho nhau..
Ta có:
\(1=4.0+1\)
\(2^1=2^{4.0+1}=2^0.2^1=2\)
\(5=4.1+1\)
\(3^5=3^{4.1+1}=3^4.3=81.3=\left(...3\right)\)
\(\Rightarrow b^{4.k+1}\)sẽ có tận cùng bằng tận cùng của b\(\left(k\in N\right)\)
Vậy chữ số tận cùng của S chình bằng chữ số tận cùng của :
B=2+3+4+5+...+2014
Số số hạng của B là:
(2014-2):1+1=2013(số hạng)
Tổng B là :
\(\left(2014+2\right).2013:2=2029104\)
Vậy tổng S có tận cùng là 4
Đáp số: 4
Giải
22003 = 2003 lần chữ số 2 nhân lại.
Vì 2 × 2 × 2 × 2 = 16 (tận cùng là 6)
Mà 6 × 6 × 6 × ... = X (tận cùng là sáu vì 6 × 6 = 36)
Bốn số 2 nhân lại mới được 6 vậy có tổng cộng 2003 số 2 chia 4, tức là thế này:
(2 × 2 × 2 × 2) × (...) × ... = X (có 2003 chữ số 2)
Có tổng cộng 2003 ÷ 4 = 500 (cặp) và dư lại 3 số 2.
Vậy chữ số tận cùng là 6 × ba số hai
=> 6 × 2 × 2 × 2 = 48 (tận cùng là 8)
Vậy bạn Hùng sai !
Ghi chú: thật ra em mới học lớp 5 và biết một tí về toán lớp 6 nên bài này em làm được!
Bạn Hùng giải sai vì :
(29)17 . 2 = 2153 . 2 = 2154 \(\ne\)2155
\(5^6\equiv1\left(mod8\right)\)
\(353\equiv5\left(mod6\right)\Rightarrow353^{81}\equiv5^{81}\equiv5\left(mod6\right)\)
Đặt: \(358^{81}=6t+5\)
=> \(5^{353^{81}}\equiv5^{6t+5}\equiv5^5\equiv5\left(mod8\right)\)
=>\(5^{353^{81}}-5-15.8\equiv0\left(mod8\right)\)
\(\Rightarrow5^{353^{81}}-125\equiv0\left(mod8\right)\)
mà : \(5^{353^{81}}\equiv0\left(mod125\right)\Rightarrow5^{353^{81}}-125\equiv0\left(mod125\right)\)
\(\Rightarrow5^{353^{81}}-125\equiv0\left(mod1000\right)\)