\(7^{2012}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

Ta có: \(44\equiv2\left(mod7\right)\Rightarrow44^{2005}\equiv2^{2005}\left(mod7\right)\) (*)

Lại có: \(2^3\equiv1\left(mod7\right)\Rightarrow\left(2^3\right)^{668}\equiv1\left(mod7\right)\Rightarrow\left(2^3\right)^{668}.2\equiv2\left(mod7\right)\)

            \(\Leftrightarrow2^{2005}\equiv2\left(mod7\right)\)(**)

Từ (*) và (**) suy ra \(44^{2005}\equiv2\left(mod7\right)\)

Vậy \(44^{2005}\)chia 7 dư 2

19 tháng 10 2020

bạn có thể giúp mình trả lời 2 câu b và c đk ko

2 tháng 12 2016

Vì số 6 lũy thừa lên đều có kết quả có chữ số tận cùng là 6 nên ta có: 6^7^8^9 có chữ số tận cùng là 6

23 tháng 8 2019

Câu hỏi của Phạm Ngọc Thạch - Toán lớp 6 - Học toán với OnlineMath

https://olm.vn/hoi-dap/detail/7627042571.html

Tham khảo link trên

Hk tốt !!

23 tháng 8 2019

Sử dụng đồng dư thức nha

\(3^{10}\equiv49\left(mod1000\right)\)

\(3^{100}\equiv\left(49^5\right)^2\equiv249^2\equiv1\left(mod1000\right)\)

=> 3 chữ số tận cùng là 001

Study well