Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta chứng minh: \(B=\left(\sqrt{3}+\sqrt{2}\right)^{2n}+\left(\sqrt{3}-\sqrt{2}\right)^{2n}=\left(5+2\sqrt{6}\right)^n+\left(5-2\sqrt{6}\right)^n\) là số nguyên với mọi n
Với \(n=0\Rightarrow B=2\)
Với \(n=1\Rightarrow B=10\)
Giả sử nó đúng đến \(n=k\) hay
\(\hept{\begin{cases}\left(5+2\sqrt{6}\right)^{k-1}+\left(5-2\sqrt{6}\right)^{k-1}=a\\\left(5+2\sqrt{6}\right)^k+\left(5-2\sqrt{6}\right)^k=b\end{cases}}\) \(\left(a,b\in Z\right)\)
Ta chứng minh nó đúng đến \(n=k+1\)
Ta có: \(\left(5+2\sqrt{6}\right)^{k+1}+\left(5-2\sqrt{6}\right)^{k+1}\)
\(=\left(5+2\sqrt{6}\right)\left(b-\left(5-2\sqrt{6}\right)^k\right)+\left(5-2\sqrt{6}\right)\left(b-\left(5+2\sqrt{6}\right)^k\right)\)
\(=b\left(5+2\sqrt{6}\right)-\left(5-2\sqrt{6}\right)^{k-1}+b\left(5-2\sqrt{6}\right)-\left(5+2\sqrt{6}\right)^{k-1}\)
\(=10b-a\)
Vậy ta có điều phải chứng minh
b/ Đặt \(S_n=\left(5+2\sqrt{6}\right)^n+\left(5-2\sqrt{6}\right)^n=x^n+y^n\)
Ta có: \(\hept{\begin{cases}x^2=10x-1\\y^2=10y-1\end{cases}}\)
\(\Rightarrow S_{n+2}=x^{n+2}+y^{n+2}=10\left(a^{n+1}+b^{n+1}\right)-\left(a^n+b^n\right)=10S_{n+1}-S_n\)
\(\Rightarrow S_{n+2}+S_n=10S_{n+1}⋮10\)
Tương tự cũng có: \(S_{n+4}+S_{n+2}=10S_{n+3}⋮10\)
\(\Rightarrow S_{n+4}-S_n⋮10\)
Từ đây ta thấy được \(S_{n+4}\equiv S_n\left(mod10\right)\)
Mà \(S_0=2\)
Vậy với mọi n chia hết cho 4 thì số tận cùng của B là 2.
Quay lại bài toán ta thấy \(1004⋮4\) nên M sẽ có chữ số tận cùng là 2.
Đặt \(\frac{5-\sqrt{21}}{2}=a;\frac{5+\sqrt{21}}{2}=b>0\) thì \(ab=1\)
*Chứng minh an là số tự nhiên.
Với n = 0, 1 nó đúng. Giả sử nó đúng đến n = k tức là ta có:
\(\hept{\begin{cases}a^{k-1}+b^{k-1}\inℤ\\a^k+b^k\inℤ\end{cases}}\). Ta cần chưng minh nó đúng với n = k + 1 hay:
\(a^k.a+b^k.b=\left(a^k+b^k\right)\left(a+b\right)-ab\left(b^{k-1}+a^{k-1}\right)\)
\(=\left(a^k+b^k\right)\left(a+b\right)-\left(b^{k-1}+a^{k-1}\right)\inℤ\) (em tắt tí nhá, dựa vào giả thiết quy nạp thôi)
Vậy ta có đpcm.
Còn lại em chưa nghĩ ra