K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2020

Theo đề bài ta có phương trình : \(\overline{abc}\cdot\overline{bca}\cdot\overline{cab}=\overline{2defghij9}=x\left(a,b,c,d,e,f,g,h,i,j,x\inℕ\right)\)

Ta có \(\overline{abc}\cdot\overline{bca}\cdot\overline{cab}=\overline{2defghij9}\) do chữ số tận cùng của tích \(ca\) (đặt là \(y\)) khi nhân với \(b\) thì có chữ số tận cùng là 9 (áp dụng phép đặt tính và nhân lần lượt các thừa số \(\overline{abc},\overline{bca},\overline{cab}\)). Vậy có 2 trường hợp xảy ra.

TH1 : \(yb=9=1\cdot1\cdot9=1\cdot3\cdot3\)

TH1a : \(a=1,b=1,c=9\Rightarrow x=119\cdot191\cdot911=20706119\)(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 8 chữ số vậy TH1a vô lí)

TH1b : \(a=1,b=3,c=3\Rightarrow x=133\cdot331\cdot313=1379199\)(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 7 chữ số vậy TH1b vô lí)

TH2 : \(yb=49=1\cdot7\cdot7\Rightarrow\overline{abc}=177\Rightarrow x=177\cdot771\cdot717=97846839\) 

(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 8 chữ số vậy TH2 vô lí)

Vậy \(\overline{abc}\in\left\{\varnothing\right\}\)

14 tháng 1 2018

ta có 
s = abc + bca + cab
=> s =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )
=>S = 100a + 10b + c + 100b  + 10c + a + 100c + 10a + b
=> S = 111a + 111b + 111c
=> S = 111( a+b+c )= 37 . 3( a+b + c)
giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
                       3(a+b+c) chia hết 37
                      => a+b+c chia hết cho 37 
Điều này không xảy ra vì           1  ≤ a + b + c ≤ 27
vậy S = abc + bca + cab không phải là số chính phương

tk cho mk nha $_$

17 tháng 5 2018

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Giải sử S là số chính phương 

=> 3(a + b + c )  \(⋮\)  37 

   Vì 0 < (a + b + c ) \(\le27\)

=> Điều trên là vô lý 

Vậy S không là số chính phương

18 tháng 5 2018

2/            Gọi số đó là abc

Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)

\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)

Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)

1 tháng 1 2018

Có : abc+bca+cab = 100a+10b+c+100b+10c+a+100c+10a+b = 111.(a+b+c)

Để 111.(a+b+c) là 1 số chính phương thì a+b+c phải chia hết cho 111

Mà 1 < = a+b+c < = 27 => ko tồn tại a,b,c để 111.(a+b+c) chính phương

k mk nha

1 tháng 1 2018

Không tồn tại

câu b là cái gì vậy bạn?

21 tháng 2 2016

abc+bca+cab=66

=>(100a+10b+c)+(100b+10c+a)+(100c+10a+b)=666

=>(100a+10a+a)+(100b+10b+b)+(100c+10c+c)=666

=>111a+111b+111c=666=>111(a+b+c)=666

=>a+b+c=6

mà a>b>c>0=>a=3;b=2;c=1

a);b) ko hiểu đề

11 tháng 8 2016

Câu 2: Ta có:
abc=(bca+cab):2
=>2.abc=bca+cab
=>200a+20b+2c=101b+110c+11a
=>189a=81b+108c
=>7a=3b+4c
Tìm được 4 số: 481;629;518;592

27 tháng 3 2017

còn số 407 thì sao bạn

20 tháng 3 2016

Ta có : 3a +5 b = 8c

        => 3a +5b -8b = 8c -8b 

       => 3a- 3 b = 8.[c-b]

       => 3.[a-b] = 8.[c-b]

    => 3.[a-b] chia hết cho 8

Đang bí nghi đã

6 tháng 2 2016

32

ủng hộ mk nha

6 tháng 2 2016

32 duyệt nha

10 tháng 7 2017

Ta thấy \(\overline{abc}+\overline{bca}+\overline{cab}=111\left(a+b+c\right)=3.37\left(a+b+c\right)\)

Do 3 và 37 là các số nguyên tố, để \(\overline{abc}+\overline{bca}+\overline{cab}\) là số chính phương thì \(a+b+c=3.37.k^2\left(k\in N,k\ne0\right)\)

Tuy nhiên do a, b, c là các chữ số nên \(a+b+c\le27\)

Vậy không tồn tại số tự nhiên thỏa mãn yêu cầu đề bài.