K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d

=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d

=> 7(5n+7) chia hết cho d

hay 35n+49 chia hết cho d

(35n+50)-(35n+49) chia hết cho d

35n+50-35n-49 chia hết cho d

(35n-35n)+(50-49) chia hết cho d

0+1 chia hết cho d 1

chia hết cho d => d=1

Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)

Ta có a chia 25 dư 5 => a + 20 chia hết cho 25

        a chia 28 dư 8 => a + 20 chia hết cho 28

        a chia 35 dư 15 => a + 20 chia hết cho 35

=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}

Mà 119 < (a + 20) < 1020

Nên a + 20 = 700

=> a = 680

Vậy số tự nhiên cần tìm là 680

2 tháng 11 2016

Vì x là số nguyên tố nhỏ nhất => x=2

Số cần tìm có dạng \(\overline{22y}\)

Vì \(\overline{22y}\)chia hết cho 5 => y =(0;5)

Mà số trên chia hết cho 3 => \(2+2+y\)chia hết cho 3

\(=>y=5\)

Vậy số cần tìm là 225

27 tháng 11 2015

1.

Ta có p = 42k  r = 2.3.7.k + r ( k,r \(\in\)N , 0 < r < 42 )

Vì p là số nguyên tố nên r không chia hết cho 2, 3, 7.

Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9, 15, 21, 25, 27, 33, 35, 39.

Loại đi các số chia hết cho 3, cho 7, chỉ còn 25.

Vậy r = 25.

 

27 tháng 11 2015

2) Ta có : 10^5000 + 125=100...00+125=100...00125

Có tổngcác chữ số là 1+1+2+5=9 chia hết cho 9

Do 10^500 chia hết cho 125 và 125 chia hết cho 125

=> 10^5000+125 chia hết cho 5

18 tháng 12 2018

xem trên mạng nhé 

18 tháng 12 2018

mình k thấy bạn ak !

29 tháng 11 2023

Bài 1:

\(180=2^2\cdot3^2\cdot5\)

Bài 2:

1: \(D=\overline{2x5y}\)

D chia hết cho 2 và 5 nên D chia hết cho 10

=>D có tận cùng là 0

=>y=0

=>\(D=\overline{2x50}\)

D chia hết cho 9

=>2+x+5+0 chia hết cho 9

=>x+7 chia hết cho 9

=>x=2

Vậy: D=2250

2: 

a: \(A=1995+2005+x\)

\(=4000+x\)

A chia hết cho 5

=>\(x+4000⋮5\)

=>\(x⋮5\)

mà \(23< x< 35\)

nên \(x\in\left\{25;30\right\}\)

c: Bạn ghi lại đề đi bạn

1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7

=> 4 (a - 3) chia hết cho 7  => 4a - 12 chia hết cho 7

=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)

a chia cho 13 dư 11 => a - 11 chia hết cho 13

=> 4 (a - 11) chia hết cho 13  => 4a - 44 chia hết cho 13

=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)

a chia cho 17 dư 14 => a - 14 chia hết cho 17

=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17

=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)

Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)

Mà a nhỏ nhất => 4a - 5 nhỏ nhất

=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547

=> 4a = 1552  => a= 388

2. Gọi ƯCLN(a,b) = d

=> a = d . m          (ƯCLN(m,n) = 1)

     b = d . n  

Do a < b => m<n

Vì BCNN(a,b) . ƯCLN(a,b) = a . b

\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)

Vì BCNN(a,b) + ƯCLN(a,b) = 19

=> m . n . d  + d = 19

=> d . (m . n + 1) = 19

=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)

Ta có bảng sau:

d m . n +1 m . n m n a b 1 19 18 1 2 18 9 1 18 2 9

Vậy (a,b) = (2;9) ; (1 ; 18)

3. 

26 tháng 10 2023

Để tìm số tự nhiên a nhỏ nhất thỏa mãn các điều kiện trên, chúng ta có thể thử từng giá trị của a cho đến khi tìm được số a thỏa mãn. Tuy nhiên, để giải quyết bài toán này một cách nhanh chóng, chúng ta có thể sử dụng phương pháp phân tích số học.

Theo yêu cầu của bài toán, ta có:

  1. A + 1 chia hết cho 2: Điều này có nghĩa là A là số lẻ.
  2. a chia hết cho tích của hai số nguyên tố liên tiếp: Điều này có nghĩa là a chia hết cho 2 hoặc a chia hết cho 3.
  3. Tích 2023 x a là số chính phương: Điều này có nghĩa là 2023 x a là một số mà căn bậc hai của nó là một số nguyên.

Với các điều kiện trên, chúng ta có thể thử từng giá trị của a để tìm số a thỏa mãn. Tuy nhiên, để giải quyết bài toán này một cách nhanh chóng, chúng ta có thể sử dụng phương pháp phân tích số học.

Ta có thể phân tích số 2023 thành tích của các thừa số nguyên tố như sau: 2023 = 7 x 17 x 17. Vì vậy, để tích 2023 x a là một số chính phương, ta cần a chia hết cho 7 và 17.

Tiếp theo, ta xét điều kiện a chia hết cho 2 hoặc a chia hết cho 3. Ta thử từng giá trị của a để tìm số a thỏa mãn các điều kiện trên.

Từ các phân tích trên, ta có thể thử các giá trị a như sau:

  • a = 7 x 17 = 119: a chia hết cho 7 và 17, và tích 2023 x a = 2023 x 119 = 240737 chính phương.
  • a = 2 x 7 x 17 = 238: a chia hết cho 2, 7 và 17, và tích 2023 x a = 2023 x 238 = 482074 chính phương.

Vậy, số tự nhiên a nhỏ nhất thỏa mãn các điều kiện trên là a = 119.

26 tháng 10 2023

Dài thế bạn

Có đúng ko vậy bài này là đề thi thử mà có 0,5 mà sao khó zậy bạn