K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

Theo bài ra ta có:

\(\dfrac{2}{7}A=\dfrac{9}{4}.\dfrac{3}{10}B\\ \Rightarrow\dfrac{2}{7}A=\dfrac{27}{40}B\\ \Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{27}{40}}{\dfrac{2}{7}}=\dfrac{189}{80}\)

29 tháng 11 2018

\(\dfrac{2}{7}\)A=\(\dfrac{3}{10}\).\(\dfrac{4}{9}\)

\(\dfrac{2}{7}\)A=\(\dfrac{2}{15}\)B

\(\dfrac{A}{\dfrac{2}{15}}=\dfrac{B}{\dfrac{2}{7}}\)

\(\dfrac{A}{B}=\dfrac{2}{\dfrac{15}{\dfrac{2}{7}}}\)

\(\dfrac{A}{B}=\dfrac{7}{15}\)

7 tháng 7 2017

a)\(1,5:2,16=15:216=5:72\)

b)\(4\dfrac{2}{7}:\dfrac{3}{5}=\dfrac{30}{7}:\dfrac{3}{5}=\dfrac{30}{7}.\dfrac{5}{3}=\dfrac{50}{7}=50:7\)

c)\(\dfrac{\dfrac{2}{9}}{0,31}=\dfrac{2}{9}:\dfrac{31}{100}=\dfrac{2}{9}.\dfrac{100}{31}=\dfrac{31}{450}=31:450\)

18 tháng 4 2017

a)

b)

c)

d)

13 tháng 10 2018

Giải bài 59 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

11 tháng 11 2018

1. Tìm x thuộc N:

\(\left(x-3\right)^6=\left(x-3\right)^7\)

\(\Leftrightarrow\left(x-3\right)^6-\left(x-3\right)^7=0\)

\(\Leftrightarrow\left(x-3\right)^6.\text{[}1-\left(x-3\right)\text{]}=0\)

\(\Leftrightarrow\left(x-3\right)^6.\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)(thỏa mãn \(x\in N\))

11 tháng 11 2018

2.

Ta có: 6x=4y=3z

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\)

\(=\dfrac{2x+3y-5z}{4+9-20}=\dfrac{-21}{-7}=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.4=12\end{matrix}\right.\)

4 tháng 10 2016

\(\frac{2}{7}\)A = \(\frac{3}{10}\)B x \(\frac{4}{9}\)\(\frac{2}{15}\)B => \(\frac{A}{B}\)\(\frac{2}{15}\)\(=\frac{7}{15}\)

                                                                         \(\frac{2}{7}\)

9 tháng 10 2016

oh ! naruto hàng nhái . tính nhái anh à ?

20 tháng 9 2017

Mấy bài dễ tự làm nhé:D

1)

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)

Ta có điều phải chứng minh

\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)

Ta có điều phải chứng minh

2 tháng 2 2019

làm ơn các bạn hãy giúp mình mình cần ngay:x

3 tháng 2 2019

mk lm rùi nên k cần giúp nx đâu

30 tháng 6 2017

1) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2010}=\dfrac{2010}{a}=\dfrac{a+b+c+2010}{b+c+2010+a}=1\)

\(\dfrac{2010}{a}=1\Rightarrow a=2010\);

\(\dfrac{c}{2010}=1\Rightarrow c=2010\);

\(\dfrac{b}{c}=1\Rightarrow\dfrac{b}{2010}=1\Rightarrow b=2010\).

Vậy (a, b, c) = (2010; 2010; 2010)

3)

a) \(A=\sqrt{x+24}+\dfrac{4}{7}\)

Có: \(\sqrt{x+24}\ge0\forall x\in R\)

\(\Rightarrow\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\forall x\in R\)

\(\Rightarrow A\ge\dfrac{4}{7}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+24}=0\Rightarrow x+24=0\Rightarrow x=-24\)

Vậy GTNN của \(A=\dfrac{4}{7}\Leftrightarrow x=-24\)

b) \(B=\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\)

Có: \(\sqrt{2x+\dfrac{4}{13}}\ge0\forall x\in R\)

\(\Rightarrow\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\ge-\dfrac{13}{191}\forall x\in R\)

\(\Rightarrow B\ge-\dfrac{13}{191}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{2x+\dfrac{4}{13}}=0\)

\(\Rightarrow2x+\dfrac{4}{13}=0\)

\(\Rightarrow2x=-\dfrac{4}{13}\)

\(\Rightarrow x=-\dfrac{2}{13}\)

Vậy GTNN của \(B=-\dfrac{13}{191}\Leftrightarrow x=-\dfrac{2}{13}\)

4)

a) \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\)

Có: \(\sqrt{x+\dfrac{5}{41}}\ge0\forall x\in R\)

\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}\le0\forall x\in R\)

\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\forall x\in R\)

\(\Rightarrow A\le\dfrac{7}{12}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+\dfrac{5}{41}}=0\)

\(\Rightarrow x+\dfrac{5}{41}=0\)

\(\Rightarrow x=-\dfrac{5}{41}\)

Vậy GTLN của \(A=\dfrac{7}{12}\Leftrightarrow x=-\dfrac{5}{41}\)

b) \(B=\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\)

Có: \(\sqrt{x-\dfrac{2}{3}}\ge0\forall x\in R\)

\(\Rightarrow-\sqrt{x-\dfrac{2}{3}}\le0\forall x\in R\)

\(\Rightarrow\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\le\dfrac{-5}{13}\forall x\in R\)

\(\Rightarrow B\le\dfrac{-5}{13}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x-\dfrac{2}{3}}=0\)

\(\Rightarrow x-\dfrac{2}{3}=0\)

\(\Rightarrow x=\dfrac{2}{3}\)

Vậy GTLN của \(B=\dfrac{-5}{13}\Leftrightarrow x=\dfrac{2}{3}\)

1 tháng 7 2017

làm giup minh bai 2 luon nha

khocroi