Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi ba số tự nhiên liên tiếp đó là a, a+1 , a+2 ( a thuộc N )
Theo đề bài ta có : ( a + 1 )( a + 2 ) - a( a + 1 ) = 25
<=> a2 + 3a + 2 - a2 - a = 25
<=> 2a = 25
<=> a = 25/2 ( đến đây => sai đề :)) )
2. Gọi ba số tự nhiên chẵn liên tiếp đó là 2a, 2a+2, 2a+4 ( a thuộc N )
Theo đề bài ta có : ( 2a + 2 )2 - 2a( 2a + 4 ) = 1/3.2a
<=> 4a2 + 8a + 4 - 4a2 - 8a = 2/3a
<=> 4 = 2/3a
<=> a = 6
=> 2a = 12
2a + 2 = 14
2a + 4 = 16
Vậy ba số cần tìm là 12 ; 14 ; 16
a)
Gọi x - 1 là số thứ nhất ( ĐK : \(x-1\in N\) )
x là số thứ hai
x + 1 là số thứ ba
Theo đề , ta có :
\(x\left(x-1\right)+25=x\left(x+1\right)\)
\(x^2-x+25=x^2+x\)
\(2x=-25\)
\(x=-\frac{25}{2}\) ( loại vì x \(\notin\) N )
b)
Gọi x - 2 là số thứ nhất ( ĐK : \(x-2\in N;x-2⋮2\) )
x là số thứ hai
x + 2 là số thứ ba
Theo đề ; ta có :
\(x^2-\left(x+2\right)\left(x-2\right)=\frac{1}{3}\left(x-2\right)\)
\(x^2-\left(x^2-2^2\right)=\frac{1}{3}\left(x-2\right)\)
\(x^2-x^2+4=\frac{1}{3}\left(x-2\right)\)
\(\frac{1}{3}\left(x-2\right)=4\)
\(x-2=12\)
\(x=14\) ( nhận )
Vậy số thứ hai là 14
Số thứ nhất là 14 - 2 = 12
Số thứ ba là 14 + 2 = 16
Bài 1 nha !
Gọi số tự nhiên lẻ cần tìm có dạng \(\overline{xy}\) (\(\overline{xy}\) >0)
\(\overline{xy}=10x+y\)
Mà \(\overline{xy}⋮5\)
Nên \(\left(10x+y\right)⋮5\)
Do 10x chia hết cho 5
=> để số đó chia hết cho 5 thì y chia hết cho 5
\(\Rightarrow y\in B\left(5\right)\)
\(\Rightarrow y\in\left\{0,5,15,...\right\}\)
Vì y là 1 số và \(\overline{xy}\) lẻ
Nên y = 5
Ta có:
\(\overline{xy}-x=68\)
\(10x+y-x=68\)
\(9x+5=68\)
\(9x=63\Leftrightarrow x=7\)
Vậy số cần tìm là 75
Bài 3:
Nửa chu vi là: 320:2 = 160 (m)
Gọi chiều dài là x (m)
=> Chiều rộng là: 160 - x
Theo đề ra ta có pt:
\(\left(x+10\right)\left(180-x\right)-2700=x\left(160-x\right)\)
\(\Leftrightarrow180x-x^2+1800-10x-2700=160x-x^2\)
\(\Leftrightarrow170x-900-x^2=160x-x^2\)
\(\Leftrightarrow10x-900=0\)
\(\Leftrightarrow x=90\)
Vậy chiều dài là 90 (m)
Chiều rộng là: 160 - 90 = 70 (m)