K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2022

Số kết quả có thể là C 5 20

đúng ko

Số kết quả có thể là C520C205.

Số kết quả thuận lợi là số cách chọn 5 số  trong tập [1,2,,10][1,2,…,10]. Do đó, số kết quả thuận lợi là C510C105.

Vậy xác suất cần tìm là  C510C5200,016

đúng ko

6 tháng 11 2016

Số cách chọn 5 h/s bất kì trong 199 h/s là: C5199
.............................có số thứ tự từ 001 đến 099 là: C599
......................................................150 đến 199 là:C 550

a) xác suất của biến cố :" 5 h/s ... (đầu bài)" l;à
P1= C599 phần C5199 = 0.029
b) P2=C 550 phần C5199 = 0,0009

3 tháng 11 2016

A) 0.497

B) 0. 246

4 tháng 11 2016

bn giải rõ ra được không ?

13 tháng 12 2019

Đáp án D.

Gọi A:”Bạn được chọn có số thứ tự lớn hơn số thứ tự của Nam”.

23 tháng 11 2016

0.1073741824

23 tháng 3 2016

gọi\(\Omega\) là không gian mẫu để rút ra 10 tấm thẻ trong 30 tấm==>n(\(\Omega\))=C1030    =30045015

gọi A là biến cố "lấy 10 tấm thẻ trong đó có 5 tấm mang số lẻ, 5 tấm chẵn trong đó có 1 tấm chia hết cho 10"

nx: có 30 tấm đánh số từ 1->30 ------->15 tấm lẻ, 15 tấm chẵn, có 3 tấm chứa số 10, 20,30 là chia hết cho 10

- trường hợp rút 5 tấm lẻ là :C515   =3003 cách    

- TH rút 5 tấm chẵn trong đó có 1 tấm chia hết cho 10 là

3xC412  =1485 cách

=======> n(A)=1485x3003=4459455 cách====>P(A)=99/667

NV
22 tháng 12 2020

a. Không gian mẫu: \(C_{10}^3\)

Số cách chọn 3 số nguyên liên tiếp: 8 cách (123; 234;...;8910)

Số cách chọn ra 3 số trong đó có đúng 2 số nguyên liên tiếp:

- Cặp liên tiếp là 12 hoặc 910 (2 cách): số còn lại có 7 cách chọn

- Cặp liên tiếp là 1 trong 7 cặp còn lại: số còn lại có 6 cách chọn

Vậy có: \(C_{10}^3-\left(8+2.7+7.6\right)=56\) bộ thỏa mãn

Xác suất: \(P=\dfrac{56}{C_{10}^3}=...\)

b.

Có 2 số chia hết cho 4 là 4 và 8

Rút ra k thẻ: \(C_{10}^k\) cách

Số cách để trong k thẻ có ít nhất 1 thẻ chia hết cho 4: \(C_{10}^k-C_8^k\)

Xác suất thỏa mãn: \(P=\dfrac{C_{10}^k-C_8^k}{C_{10}^k}>\dfrac{13}{15}\)

\(\Leftrightarrow\dfrac{2}{15}>\dfrac{C_8^k}{C_{10}^k}=\dfrac{\dfrac{8!}{k!\left(8-k\right)!}}{\dfrac{10!}{k!\left(10-k\right)!}}=\dfrac{\left(9-k\right)\left(10-k\right)}{90}\)

\(\Leftrightarrow\left(9-k\right)\left(10-k\right)-12< 0\Leftrightarrow k^2-19k+78< 0\)

\(\Rightarrow6< k< 13\)