Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt:
Nhôm: m1 = 0,5kg
c1 = 880J/kg.K
Nước: m2 = 2kg
c2 = 4200J/kg.K
Đồng: m3 = 200g = 0,2kg
c3 = 380J/kg.K
t1 = 200C
t2 = 21,20C
t = ?
Giải:
Nhiệt độ của bếp lò = nhiệt độ ban dầu của thỏi đồng = t0C
Nhiệt lượng thau nhôm thu vào là:
Q1 = m1.c1.(t2 - t1)
Nhiệt lượng nước thu vào là:
Q2 = m2.c2.(t2 - t1)
Nhiệt lượng đồng tỏa ra là:
Q3 = m3.c3.(t - t2)
Theo PTCBN:
Q1 + Q2 = Q3
<=> m1.c1(t2 - t1) + m2.c2.(t2 - t1) = m3.c3.(t - t2)
<=> (t2 - t1).(m1.c1 + m2.c2) = m3.c3.(t - t2)
<=> (21,2 - 20).(0,5.880 + 2.4200) = 0,2.380.(t - 21,2)
<=> 10608 = 76.(t - 21,2)
<=> 139,58 = t - 21,2
<=> t = 160,780C
Nêu tiếp tục thả vào chậu nước một thỏi đá có khối lượng 100g ở 00C; Nước đá tan hết không? Tìm nhiệt độ cuối cùng của hệ thống hoặc lượng nước đá còn sót lại nếu không tan hết? Biết nhiệt lượng nóng chảy của nước đá \(\curlywedge\)=3,14.105 j/kg. Bỏ qua sự mất nhiệt ra ngoài môi trường
Giúp mk vs, mk đg cần gấp!!! Cảm ơn trước
Gọi nhiệt lượng của nước là \(Q_t\) từ \(20^oC\) về \(0^oC\) và của nước đá tan hết là \(Q_{thu}\), ta có:
\(Q_t=m_2c_2.\left(20-0\right)=0,3.4200.20=25200J\)
\(Q_{thu}=m_1.\lambda=0,1.3,4.10^5=34000J\)
Ta thấy Qthu > Qtỏa nên nước đá không tan hết. Lượng nước đá chưa tan hết là:
\(m=\frac{Q_{thu}-Q_{tỏa}}{\lambda}\)\(=\frac{8800}{3,4.10^5}=0,026\left(kg\right)\)
a) nhiệt lượng tỏa ra của 100 g hơi nước ở 100 độ C giảm xuống còn 10 độ C :
Q1=m1.L +m1.c1.Δ =0,1.2300000+0,1.4200.(100-10)
Q1=267800(J)
nhiệt lượng thu vào của m nước đá ở -4 độ C tăng tới 10 độ C là:
Q2=m.c.Δ+ m.r + m.c.Δ = m.2100.(0-(-4))+m.340000+m.4200.(10-0)
Q2=390400m
PTCBN:
Q1 = Q2
↔267800 = 390400m
↔m=267800/390400
→m gần bằng 0,69 kg
200g=0,2kg
50g=0,05kg
100g=0,1kg
ta có phương trình cân bằng nhiệt:
Qtỏa=Qthu
\(\Leftrightarrow Q=m_1C_1\left(0--10\right)+m_1\lambda+m_1C_2\left(100-0\right)+m_1L\)
\(\Leftrightarrow Q=3600+68000+84000+460000\)
\(\Leftrightarrow Q=615600J\)
nếu bỏ cục nước đá vào nước thì phương trình cân bằng nhiệt là:
Qtỏa=Qthu
\(\Leftrightarrow Q_n+Q_{nh}=Q_{nđ}\)
\(\Leftrightarrow Q_2+Q_3=Q_1\)
\(\Leftrightarrow m_2C_2\left(t_2-t\right)+m_3C_3\left(t_3-t\right)=m_1C_1\left(t-t_1\right)+\left(m_1-0,05\right)\lambda\)
\(\Leftrightarrow4200m_2\left(20-0\right)+88\left(20-0\right)=360\left(0--10\right)+3,4.10^5\left(0,2-0,05\right)\)
\(\Leftrightarrow84000m_2+1760=54600\)
\(\Rightarrow m_2=0,63kg\)
chú ý ở câu b:
nhiệt độ cân bằng là 0 vì nước đá chưa tan hết.
khối lượng nhân cho lamđa phải trừ đi cho phần chưa tan hết
chúc bạn thành công nhé
Tóm tắt:
mnhôm = 0,5kg
mnước = 2kg
t1nước = 20oC
mđồng = 200g = 0,2kg
t2nước = 21,2oC
tlò = ? oC
cnhôm = 880J/kg.K
cnước = 4200J/kg.K
cđồng = 380J/kg.K
b)H = 10%
tthực của lò = ? oC
c)mđá = 100g = 0,1kg
t1đá = 0oC
t cuối cùng của hệ thống = ? oC
hoặc mnước đá không tan hết
λ = 3,4.105J/kg
-------------------------------------------------
Bài làm:
a)Ta có: Qthu = Qtỏa
⇔ mnhôm.cnhôm.Δt + mnước.cnước.Δt = mđồng.cđồng.Δt
⇔ 0,5.880.(21,2 - 20) + 2.4200.(21,2 - 20) = 0,2.380.(x - 21,2)
⇔ 528 + 10080 = 76.x - 1611,2
⇔ -76.x = -1611,2 - 528 - 10080
⇔ -76.x = -12219,2
⇒ x = \(\dfrac{15274}{95}\)
Vậy nhiệt độ của bếp lò bằng \(\dfrac{15274}{95}\)oC.
b)Ta có: \(\dfrac{90}{100}\)Qtỏa = Qthu
⇔ Qtỏa = Qthu. \(\dfrac{90}{100}\)
⇔ Qtỏa = (528 + 10080).\(\dfrac{90}{100}\)
⇒ Qtỏa = 9547,2(J)
Nhiệt độ thực của bếp lò là:
Q = m.c.Δt
⇔ 9547,2 = 0,2.380.(x' - 21,2)
⇔ 9547,2 = 76.x' - 1611,2
⇔ -76.x' = -1611,2 - 9547,2
⇒ x' = \(\dfrac{13948}{95}\)
Vậy nhiệt độ thực của bếp lò là \(\dfrac{13948}{95}\)oC.
c)Tui đang suy nghĩ.
mnhôm = 0,5kg
mnước = 2kg
t1nước = 20oC
mđồng = 200g = 0,2kg
t2nước = 21,2oC
tlò = ? oC
cnhôm = 880J/kg.K
cnước = 4200J/kg.K
cđồng = 380J/kg.K
b)H = 10%
tthực của lò = ? oC
c)mđá = 100g = 0,1kg
t1đá = 0oC
t cuối cùng của hệ thống = ? oC
hoặc mnước đá không tan hết
λ = 3,4.105J/kg
-------------------------------------------------
Bài làm:
a)Ta có: Qthu = Qtỏa
⇔ mnhôm.cnhôm.Δt + mnước.cnước.Δt = mđồng.cđồng.Δt
⇔ 0,5.880.(21,2 - 20) + 2.4200.(21,2 - 20) = 0,2.380.(x - 21,2)
⇔ 528 + 10080 = 76.x - 1611,2
⇔ -76.x = -1611,2 - 528 - 10080
⇔ -76.x = -12219,2
⇒ x = 15274951527495
Vậy nhiệt độ của bếp lò bằng 15274951527495oC.
b)Ta có: 9010090100Qtỏa = Qthu
⇔ Qtỏa = Qthu. 9010090100
⇔ Qtỏa = (528 + 10080).9010090100
⇒ Qtỏa = 9547,2(J) Nhiệt độ thực của bếp lò là:
Q = m.c.Δt
⇔ 9547,2 = 0,2.380.(x' - 21,2)
⇔ 9547,2 = 76.x' - 1611,2
⇔ -76.x' = -1611,2 - 9547,2
⇒ x' = 13948951394895
Vậy nhiệt độ thực của bếp lò là 13948951394895oC.
câu c tui bí.hihi
a)ta có:
nhiệt lượng nước đá cần để tan hết là:
\(Q_1=m_1C_1\left(t-t_1\right)+m_1\lambda\)
\(\Leftrightarrow Q_1=33600+537600=571200J\)
nhiệt lượng nước tỏa ra là:
\(Q_2=m_2C_2\left(t_2-t\right)=537600J\)
nhiệt lượng bình tỏa ra là:
\(Q_3=m_3C_3\left(t_3-t\right)=6080J\)
do Q1>(Q2+Q3) nên nước đá chưa tan hết
b)do nước đá chưa tan hết nên nhiệt độ cuối cùng của bình nhiệt lượng kế là 0 độ C
a,Gọi các nhiệt độ lần lượt là: t1 = - 100C; t1’ = 00C; t2 = 1000C; t = 200C.
Nhiệt lượng cần thiết :
Q1 = m1c1(t1’ – t1) = 1800J
b,Giả sử nước đá nóng chảy hoàn toàn thì nhiệt lượng cần cung cấp là:
\(Q_1'=m_1\lambda=34000J\)
Nhiệt lượng miếng đồng tỏa ra khi hạ nhiệt độ xuống 00C là :
Q2 = m2c2( t2 – t1’) = 5700J
Ta thấy Q1’ > Q2 nên chỉ có một phần nước đá nóng chảy.
Nhiệt lượng nước đá thu vào để nóng chảy là : Q1’’ = m. \(\lambda\)
Theo phương trình cân bằng nhiệt ta có : Q1’’ = Q2 <=> m. l = Q2
Khối lượng nước đá bị nóng chảy là : m=
\(\dfrac{Q_2}{l}\approx0,0167kg\)
c,Nhiệt lượng do hơi nước tỏa ra :
Q3 = m3L + m3c3 (t2 – t)
Q3 = 2636000m3
Nhiệt lượng nước đá và thỏi kim loại thu vào:
Q’ = m’l + m1c3 (t – t1’) + m2c2 (t – t1’)
Với m’ = m1 - m
Thay số vào và tính được Q’ = 37842J
Áp dụng phương trình cân bằng nhiệt ta có Q3 = Q’
<=> 2636000m3 = 37841,6
=> m3 \(\approx\)0,0144kg