Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: \(\left(x-2\right)^4:\left(x-2\right)^3\)
\(=\left(x-2\right)^{4-3}\)
=x-2
b: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)
2. CM đẳng thức
a) \(a^2+b^2=\left(a+b\right)^2-2ab\)
Ta có: \(VP=\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab=a^2+b^2=VT\)
b) \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)
Ta có: \(VP=\left(a^2+b^2\right)^2-2a^2b^2=a^4+2a^2b^2+b^4-2a^2b^2=a^4+b^4=VT\)
a) = \(12a^2b\left(a^2-b^2\right)\)
= \(12a^4b-12a^2b^3\)
b)nhân ra :
= \(2x^4-16x^3+4x^2-3x^3+24x^2-6x+5x^2-40x+10\)
= \(2x^4-19x^3+33x^2-46x+10\)
Tìm x:
a) \(\frac{1}{4}x^2-\left(\frac{1}{4}x^2-2x\right)=-14\)
= \(\frac{1}{4}x^2-\frac{1}{4}x^2+2x=-14\)
=\(2x=-14=>x=-7\)
b) \(x^3+27-x\left(x^2-1\right)=27\)
= \(x^3+27-x^3+x=27\)
= \(27+x=27=>x=0\)
đề bài là : dùng hằng đẳng thức để khai triển và thu gọn các biểu thức